Electric Power ›› 2023, Vol. 56 ›› Issue (12): 20-30.DOI: 10.11930/j.issn.1004-9649.202307052
• Planning, Operation and Power Transaction of Distributed Smart Grid • Previous Articles Next Articles
Zhaoxiang YUAN1(), Zhihong XIAO1, Jing WANG2, Yanling YU3, Yan HUANG3(
), Xingle GAO1
Received:
2023-07-14
Accepted:
2023-10-12
Online:
2023-12-23
Published:
2023-12-28
Supported by:
Zhaoxiang YUAN, Zhihong XIAO, Jing WANG, Yanling YU, Yan HUANG, Xingle GAO. A Minimized Data Collection Optimization Method for Distribution Networks Considering Multiple-Time and Compressed Candidate Sets[J]. Electric Power, 2023, 56(12): 20-30.
量测类型 | 量测布置位置 | |
节点电压幅值量测 | 1 | |
节点注入功率量测 | 2,3,4,5 | |
支路功率量测 | 1—2,2—3,3—4,4—5 |
Table 1 Initial measurement configuration of a 5-node system
量测类型 | 量测布置位置 | |
节点电压幅值量测 | 1 | |
节点注入功率量测 | 2,3,4,5 | |
支路功率量测 | 1—2,2—3,3—4,4—5 |
方案编号 | 配置1处量测时的配置方案 | 状态估计精度 | ||
0 | 未配置电流幅值量测 | 1.6602 | ||
1 | | 2.3212×10–4 | ||
2 | | 5.1805×10–4 | ||
3 | | 1.9589×10–4 | ||
4 | | 2.4112 | ||
本文优化方案 | | 1.9589×10–4 |
Table 2 State estimation accuracy with one-branch current amplitude measurements
方案编号 | 配置1处量测时的配置方案 | 状态估计精度 | ||
0 | 未配置电流幅值量测 | 1.6602 | ||
1 | | 2.3212×10–4 | ||
2 | | 5.1805×10–4 | ||
3 | | 1.9589×10–4 | ||
4 | | 2.4112 | ||
本文优化方案 | | 1.9589×10–4 |
方案编号 | 配置2个电流幅值量测时的方案 | 状态估计精度 | ||
0 | 未配置电流幅值量测 | 1.6602 | ||
1 | | 5.2133×10–4 | ||
2 | | 1.9674 ×10–4 | ||
3 | | 2.4065 ×10–4 | ||
4 | | 4.9873×10–4 | ||
5 | | 5.0931×10–4 | ||
6 | | 1.7140 ×10–4 | ||
本文优化方案 | | 1.7140×10–4 |
Table 3 State estimation accuracy with two-branch current amplitude measurements
方案编号 | 配置2个电流幅值量测时的方案 | 状态估计精度 | ||
0 | 未配置电流幅值量测 | 1.6602 | ||
1 | | 5.2133×10–4 | ||
2 | | 1.9674 ×10–4 | ||
3 | | 2.4065 ×10–4 | ||
4 | | 4.9873×10–4 | ||
5 | | 5.0931×10–4 | ||
6 | | 1.7140 ×10–4 | ||
本文优化方案 | | 1.7140×10–4 |
方案 编号 | 文献[ 矩阵,取最大值) | 文献[ 误差,取最小值) | ||
0 | 0.1656 | 0.04071 | ||
1 | 0.2495 | 0.04068 | ||
2 | 3.6769 | 0.04060 | ||
3 | 3.8064 | 0.04061 | ||
4 | 1.1723 | 0.04068 |
Table 4 Calculation results of different methods with one-branch current amplitude measurements
方案 编号 | 文献[ 矩阵,取最大值) | 文献[ 误差,取最小值) | ||
0 | 0.1656 | 0.04071 | ||
1 | 0.2495 | 0.04068 | ||
2 | 3.6769 | 0.04060 | ||
3 | 3.8064 | 0.04061 | ||
4 | 1.1723 | 0.04068 |
方案 编号 | 文献[ 矩阵,取最大值) | 文献[ 误差,取最小值) | ||
0 | 0.1656 | 0.04071 | ||
1 | 2.3101 | 0.04057 | ||
2 | 2.7738 | 0.04058 | ||
3 | 3.1701 | 0.04065 | ||
4 | 4.2601 | 0.04049 | ||
5 | 5.0398 | 0.04057 | ||
6 | 4.7315 | 0.04058 |
Table 5 Calculation results of different methods with two-branch current amplitude measurements
方案 编号 | 文献[ 矩阵,取最大值) | 文献[ 误差,取最小值) | ||
0 | 0.1656 | 0.04071 | ||
1 | 2.3101 | 0.04057 | ||
2 | 2.7738 | 0.04058 | ||
3 | 3.1701 | 0.04065 | ||
4 | 4.2601 | 0.04049 | ||
5 | 5.0398 | 0.04057 | ||
6 | 4.7315 | 0.04058 |
量测类型 | 量测布置位置 | |
节点电压 幅值量测 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 | |
节点注入 功率量测 | 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 | |
支路功率量测 | 1—2,2—3 ,3—4 ,4—5,5—6,6—7,7—8,8—9,9—10,10—11,11—12,12—13,13—14,14—15,15—16,16—17,17—18,19—20,20—21,21—22,3—23,23—24,24—25,6—26,26—27,27—28,28—29,29—30,30—31,31—32,32—33,2—19 |
Table 6 Initial measurement sets of a 33-node system
量测类型 | 量测布置位置 | |
节点电压 幅值量测 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 | |
节点注入 功率量测 | 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33 | |
支路功率量测 | 1—2,2—3 ,3—4 ,4—5,5—6,6—7,7—8,8—9,9—10,10—11,11—12,12—13,13—14,14—15,15—16,16—17,17—18,19—20,20—21,21—22,3—23,23—24,24—25,6—26,26—27,27—28,28—29,29—30,30—31,31—32,32—33,2—19 |
候选量测集 中量测类型 | 电流幅值量测布置位置 | |
支路电流 幅值量测 | 1—2,2—3 ,3—4 ,4—5,5—6,6—7,7—8,8—9,9—10,10—11,11—12,12—13,13—14,14—15,15—16,16—17,17—18,19—20,20—21,21—22,3—23,23—24,24—25,6—26,26—27,27—28,28—29,29—30,30—31,31—32,32—33,2—19 |
Table 7 Candidate measurement sets of a 33-node system
候选量测集 中量测类型 | 电流幅值量测布置位置 | |
支路电流 幅值量测 | 1—2,2—3 ,3—4 ,4—5,5—6,6—7,7—8,8—9,9—10,10—11,11—12,12—13,13—14,14—15,15—16,16—17,17—18,19—20,20—21,21—22,3—23,23—24,24—25,6—26,26—27,27—28,28—29,29—30,30—31,31—32,32—33,2—19 |
候选量测集中 量测类型 | 电流幅值量测布置位置 | |
支路电流 幅值量测 | 1—2,2—3,4—5,5—6,6—7,9—10,10—11,11—12,12—13,14—15,16—17,23—24,26—27,27—28,29—30, 31—32 |
Table 8 Candidate measurement set of the 33-node system updated by Stage-I calculation
候选量测集中 量测类型 | 电流幅值量测布置位置 | |
支路电流 幅值量测 | 1—2,2—3,4—5,5—6,6—7,9—10,10—11,11—12,12—13,14—15,16—17,23—24,26—27,27—28,29—30, 31—32 |
方法 | 电流幅值量测位置 | 状态估计精度 | 耗时/min | |||
单阶段算法 | 2—3,3—4,5—6,6—7 | 0.01377448 | 867.4580 | |||
本文算法 | 2—3,4—5,5—6,6—7 | 0.01377246 | 211.8633 |
Table 9 Comparison of calculation results through different methods
方法 | 电流幅值量测位置 | 状态估计精度 | 耗时/min | |||
单阶段算法 | 2—3,3—4,5—6,6—7 | 0.01377448 | 867.4580 | |||
本文算法 | 2—3,4—5,5—6,6—7 | 0.01377246 | 211.8633 |
断面 | 电流幅值 量测位置 | 24个时刻状态估计 精度累加值 | 耗时/min | |||
单时间断面 | 1—2, 13—14, 26—27, 27—28 | 38.5945 | 4009.6000 | |||
多时间断面 | 1—2, 2—3, 3—4, 23—24 | 0.7854 | 2201.7027 |
Table 10 Result comparison of measurement configuration optimization on single / multiple time sections
断面 | 电流幅值 量测位置 | 24个时刻状态估计 精度累加值 | 耗时/min | |||
单时间断面 | 1—2, 13—14, 26—27, 27—28 | 38.5945 | 4009.6000 | |||
多时间断面 | 1—2, 2—3, 3—4, 23—24 | 0.7854 | 2201.7027 |
1 |
张子桐, 周群, 佃钰林, 等. 基于μPMU测量数据的配电网线路阻抗参数估计[J]. 中国电力, 2023, 56 (8): 157- 165.
DOI |
ZHANG Zitong, ZHOU Qun, DIAN Yulin, et al. Parameter estimation for line impedance in distribution network based on μPMU data[J]. Electric Power, 2023, 56 (8): 157- 165.
DOI |
|
2 | 程林, 万宇翔, 齐宁, 等. 含多种分布式资源的配用电系统运行可靠性研究评述及展望[J]. 电力系统自动化, 2021, 45 (22): 191- 207. |
CHENG Lin, WAN Yuxiang, QI Ning, et al. Review and prospect of research on operation reliability of power distribution and consumption system considering various distributed energy resources[J]. Automation of Electric Power Systems, 2021, 45 (22): 191- 207. | |
3 | MONTICELLI A, WU F F. Network observability: identification of observable islands and measurement placement[J]. IEEE Power Engineering Review, 1985, PER-5 (5): 32. |
4 |
GOU B, ABUR A. An improved measurement placement algorithm for network observability[J]. IEEE Transactions on Power Systems, 2001, 16 (4): 819- 824.
DOI |
5 |
GOU B, ABUR A. A direct numerical method for observability analysis[J]. IEEE Transactions on Power Systems, 2000, 15 (2): 625- 630.
DOI |
6 | 尹冠雄, 王彬, 孙宏斌, 等. 多场景适配的多能流在线状态估计功能研发与应用[J]. 中国电机工程学报, 2020, 40 (21): 6794- 6804. |
YIN Guanxiong, WANG Bin, SUN Hongbin, et al. Multi-scene adaptive online state estimation of multi-energy network: development and application[J]. Proceedings of the CSEE, 2020, 40 (21): 6794- 6804. | |
7 | 季宇, 孙彦萍, 吴鸣, 等. 基于可观测性分析的计及DG不确定性配电网表计优化配置[J]. 电力自动化设备, 2017, 37 (3): 26- 32. |
JI Yu, SUN Yanping, WU Ming, et al. Optimal meter allocation based on observability analysis with consideration of DG uncertainty for distribution network[J]. Electric Power Automation Equipment, 2017, 37 (3): 26- 32. | |
8 |
SCHWEPPE F C, WILDES J. Power system static-state estimation, part I: exact model[J]. IEEE Transactions on Power Apparatus and Systems, 1970, PAS-89 (1): 120- 125.
DOI |
9 | 徐航, 鞠力, 董树锋, 等. 提高配电网状态估计精度的智能配电单元优化布点方法[J]. 电网技术, 2018, 42 (4): 1210- 1216. |
XU Hang, JU Li, DONG Shufeng, et al. Optimization of intelligent distribution unit placement to improve accuracy of distribution network state estimation[J]. Power System Technology, 2018, 42 (4): 1210- 1216. | |
10 |
PRASAD S, VINOD KUMAR D M. Trade-offs in PMU and IED deployment for active distribution state estimation using multi-objective evolutionary algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67 (6): 1298- 1307.
DOI |
11 | 徐艳春, 刘晓明, 席磊, 等. 改进双因子抗差贝叶斯估计在区域配网状态估计中的性能分析[J]. 中国电机工程学报, 2021, 41 (14): 4879- 4890. |
XU Yanchun, LIU Xiaoming, XI Lei, et al. Performance analysis of improved two-factor robust Bayes estimation in state estimation of regional distribution network[J]. Proceedings of the CSEE, 2021, 41 (14): 4879- 4890. | |
12 |
徐俊俊, 戴桂木, 吴在军, 等. 计及电动汽车和光伏不确定性的主动配电网量测优化配置[J]. 电力系统自动化, 2017, 41 (1): 57- 64.
DOI |
XU Junjun, DAI Guimu, WU Zaijun, et al. Optimal meter placement for active distribution network considering uncertainties of plug-in electric vehicles and photovoltaic systems[J]. Automation of Electric Power Systems, 2017, 41 (1): 57- 64.
DOI |
|
13 |
王克英, 穆钢, 陈学允. 计及PMU的状态估计精度分析及配置研究[J]. 中国电机工程学报, 2001, 21 (8): 29- 33.
DOI |
WANG Keying, MU Gang, CHEN Xueyun. Precision improvement and pmu placement studies on state estimation of a hybrid measurement system with pmus[J]. Proceedings of the CSEE, 2001, 21 (8): 29- 33.
DOI |
|
14 | 高亚静, 张占龙, 吴文传, 等. 配电网量测配置评估及优化[J]. 中国电力, 2014, 47 (7): 39- 44. |
GAO Yajing, ZHANG Zhanlong, WU Wenchuan, et al. Evaluation and optimization of measurement configuration in distribution system[J]. Electric Power, 2014, 47 (7): 39- 44. | |
15 | 徐臣, 余贻鑫. 提高配电网状态估计精度的量测配置优化方法[J]. 电力自动化设备, 2009, 29 (7): 17- 21. |
XU Chen, YU Yixin. Evaluation and optimization of meter placement to enhance distribution state estimation[J]. Electric Power Automation Equipment, 2009, 29 (7): 17- 21. | |
16 |
KEKATOS V, GIANNAKIS G B, WOLLENBERG B. Optimal placement of phasor measurement units via convex relaxation[J]. IEEE Transactions on Power Systems, 2012, 27 (3): 1521- 1530.
DOI |
17 |
LI Q, CUI T, WENG Y, et al. An information-theoretic approach to PMU placement in electric power systems[J]. IEEE Transactions on Smart Grid, 2013, 4 (1): 446- 456.
DOI |
18 | 赵媛媛, 袁澎, 艾芊, 等. 考虑拓扑约束并采用改进遗传算法的PMU优化配置[J]. 电网技术, 2014, 38 (8): 2063- 2070. |
ZHAO Yuanyuan, YUAN Peng, AI Qian, et al. Improved genetic algorithm based optimal configuration of PMUs considering topological constraints[J]. Power System Technology, 2014, 38 (8): 2063- 2070. | |
19 |
CHEN X S, LIN J, WAN C, et al. Optimal meter placement for distribution network state estimation: a circuit representation based MILP approach[J]. IEEE Transactions on Power Systems, 2016, 31 (6): 4357- 4370.
DOI |
20 |
XYGKIS T C, KORRES G N, MANOUSAKIS N M. Fisher information-based meter placement in distribution grids via the D-optimal experimental design[J]. IEEE Transactions on Smart Grid, 2018, 9 (2): 1452- 1461.
DOI |
21 |
LIU J Q, PONCI F, MONTI A, et al. Optimal meter placement for robust measurement systems in active distribution grids[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63 (5): 1096- 1105.
DOI |
22 |
AMINIFAR F, KHODAEI A, FOTUHI-FIRUZABAD M, et al. Contingency-constrained PMU placement in power networks[J]. IEEE Transactions on Power Systems, 2010, 25 (1): 516- 523.
DOI |
23 | 张健磊, 高湛军, 王志远, 等. 基于有限μPMU的主动配电网故障定位方法[J]. 电网技术, 2020, 44 (7): 2722- 2731. |
ZHANG Jianlei, GAO Zhanjun, WANG Zhiyuan, et al. Fault location method for active distribution based on finite μPMU[J]. Power System Technology, 2020, 44 (7): 2722- 2731. | |
24 |
COSER J, COSTA A S, ROLIM J G. Metering scheme optimization with emphasis on ensuring bad-data processing capability[J]. IEEE Transactions on Power Systems, 2006, 21 (4): 1903- 1911.
DOI |
25 |
何胜, 杨斌, 俞明, 等. 一种谐波量测点优化配置的两阶段算法[J]. 电力系统及其自动化学报, 2021, 33 (6): 22- 27.
DOI |
HE Sheng, YANG Bin, YU Ming, et al. Two-stage algorithm for optimal configuration of harmonic measurement points[J]. Proceedings of the CSU-EPSA, 2021, 33 (6): 22- 27.
DOI |
|
26 |
孙国城, 赵祖康. 地区电网状态估计研究[J]. 电力系统自动化, 1993, 17 (12): 41- 45.
DOI |
SUN Guocheng, ZHAO Zukang. State estimation research on electrical distribution system[J]. Automation of Electric Power Systems, 1993, 17 (12): 41- 45.
DOI |
|
27 | SEBERRY J , YAMADA M . More on maximal determinant matrices[M]. Hadamard Matrices: Constructions using Number Theory and Linear Algebra. Wiley: 245–269. |
28 | BU F K, YUAN Y X, WANG Z Y, et al. A time-series distribution test system based on real utility data[C]//2019 North American Power Symposium (NAPS). Wichita, KS, USA. IEEE, 2020: 1–6. |
[1] | WANG Jinfeng, LI Jinpeng, XU Yinliang, LIU Haitao, HE Jinxiong, XU Jianyuan. Distributed Optimization for VPP and Distribution Network Operation Considering Uncertainty and Green Certificate Market [J]. Electric Power, 2025, 58(4): 21-30, 192. |
[2] | XU Huihui, TIAN Yunfei, ZHAO Yuyang, PENG Jing, SHI Qingxin, CHENG Rui. A Reliability Assessment Method for Distribution Networks Based on Conditional Generative Adversarial Network and Multi-agent Reinforcement Learning [J]. Electric Power, 2025, 58(4): 230-236. |
[3] | Chunguang HE, Linfeng WANG, Yuan CAO, Jiakun AN, Zijian LEI, Guanyu SONG, Haoran JI. Collaborative Planning Method of Flexible Interconnection Devices for Multi-Voltage Level Distribution Network Considering Integrated Profits [J]. Electric Power, 2025, 58(1): 78-84. |
[4] | Wenjun LIU, Weijie DONG, Yuanyang CHEN, Shuyun HE, Jian CHEN, Dongqiang JIA. Multi-objective Optimization Control Strategy for Soft Open Point in Distribution Network with High Penetration of DG [J]. Electric Power, 2025, 58(1): 85-92. |
[5] | Quanpeng HE, Wei LIU, Weiyong YANG, Xingshen WEI, Qi WANG. A Moving Target Defense Strategy against Load Redistribution Attacks [J]. Electric Power, 2024, 57(9): 44-52. |
[6] | Yumin ZHANG, Yongchen ZHANG, Pingfeng YE, Xingquan JI, Chunyou SHI, Fudong CAI, Yichen LI. Enhanced Kernel Ridge Regression and Ensemble Empirical Mode Decomposition Based Distribution Network State Estimation [J]. Electric Power, 2024, 57(9): 156-168. |
[7] | Yajian ZHANG, Ci CHEN, Fei XUE, Li MA, Min ZHENG. Two-Stage Stochastic Optimal Voltage Control of High-Proportional Photovoltaic Distribution Networks Considering Auxiliary Power to Hydrogen [J]. Electric Power, 2024, 57(8): 23-35. |
[8] | Donglei SUN, Yi SUN, Rui LIU, Pengkai SUN, Yumin ZHANG. Maximum Accommodation Capacity Decomposition of Distributed Renewable Power Generation Considering Multi-Level Distribution Network [J]. Electric Power, 2024, 57(8): 108-116. |
[9] | Zixiang PEI, Kai SHU, Xuntian ZHOU, Tiancheng FAN, Yuhe LUO, Yuting LIU. Lightning Risk Assessment of Distribution Network Line Based on Information Fusion [J]. Electric Power, 2024, 57(7): 125-131. |
[10] | Pengfei FAN, Baoqin LI, Jiangwei HOU, Rong LI, Chongming SONG, Kaijun LIN. Economic Capacity Assessment of Renewables in Distribution Networks [J]. Electric Power, 2024, 57(7): 196-202. |
[11] | Jiawu WANG, Dianyun ZHAO, Changfeng LIU, Kang CHEN, Yumin ZHANG. Analytical Target Cascading Based Active Distribution Network Level Multi-agent Autonomous Collaborative Optimization [J]. Electric Power, 2024, 57(7): 214-226. |
[12] | Jinglin HAN, Ping HU, Ruosong HOU, Zhiyong CHEN, Hongtao LI, Yuanyuan CHAI. Voltage Optimal Control Strategy for Distribution Networks with Multiple Integrated Photovoltaic and Energy Storage Machines [J]. Electric Power, 2024, 57(6): 69-77, 152. |
[13] | Fengliang XU, Keqian WANG, Wenhao WANG, Peng WANG, Wenye WANG, Shuai ZHANG, Fengzhan ZHAO. Optimal Allocation of Hybrid Energy Storage in Low-Voltage Distribution Networks with Incentive-based Demand Response [J]. Electric Power, 2024, 57(6): 90-101. |
[14] | Junfeng QIAO, Aihua ZHOU, Lin PENG, Yiqing WANG, Xiaofeng SHEN, Sen PAN, Pei YANG, Chenhong HUANG. An Evaluation Method for Distribution Network Operation Based on Multi-source Data Deep Fusion [J]. Electric Power, 2024, 57(6): 193-203. |
[15] | Yao ZHAO, Yongjiang CHEN, Kunhua JI, Yun WANG. Distribution Network Topology Identification Based on Finite Key Nodes and Wasserstein Distance [J]. Electric Power, 2024, 57(4): 151-161. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 143
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||