中国电力 ›› 2025, Vol. 58 ›› Issue (4): 1-12.DOI: 10.11930/j.issn.1004-9649.202408095
• 电-碳协同下分布式能源系统运营关键技术 • 上一篇 下一篇
许世杰1,2(), 胡邦杰1,2, 赵亮3, 王沛1,2(
)
收稿日期:
2024-08-28
录用日期:
2024-11-26
发布日期:
2025-04-23
出版日期:
2025-04-28
作者简介:
基金资助:
XU Shijie1,2(), HU Bangjie1,2, ZHAO Liang3, WANG Pei1,2(
)
Received:
2024-08-28
Accepted:
2024-11-26
Online:
2025-04-23
Published:
2025-04-28
Supported by:
摘要:
目前综合能源系统低碳调度侧注重源侧减碳手段,而忽略荷侧低碳潜力以及源荷协同的降碳能力。以耦合电-热-气的微能源网为研究对象,提出基于能碳耦合模型的异质能流系统源荷协同的优化调度方法,搭建基于源荷协同过程的日前-日内两阶段优化调度框架。源侧采用可调热电比的热电联产机组耦合电制热设备供能,并考虑能源站中各机组的动态碳排特性;网侧利用碳排放流理论建立电-热两种能源的能碳耦合模型,并将获得的碳势分布传递给荷侧;荷侧依据碳信息并考虑分时能价影响,引导负荷实时调整用能行为进行低碳需求响应,并将更新后的负荷反馈给源侧重新优化各机组出力,从而实现源荷协同。通过对改进的IEEE 33节点电网和Barry岛32节点热网组成的微能源网进行算例分析,验证所提方法的有效性。
许世杰, 胡邦杰, 赵亮, 王沛. 基于能碳耦合模型的微能源网源荷协同优化调度研究[J]. 中国电力, 2025, 58(4): 1-12.
XU Shijie, HU Bangjie, ZHAO Liang, WANG Pei. Research on Optimal Dispatch with Source-Load Coordination for Micro-energy Grid Based on Energy-Carbon Coupling Model[J]. Electric Power, 2025, 58(4): 1-12.
时段 | ||
22:00—次日07:00和14:00—18:00 | 0.34 | |
07:00—11:00 | 0.64 | |
11:00—14:00和18:00—22:00 | 0.97 |
表 1 分时电价
Table 1 Time-sharing power price
时段 | ||
22:00—次日07:00和14:00—18:00 | 0.34 | |
07:00—11:00 | 0.64 | |
11:00—14:00和18:00—22:00 | 0.97 |
时段 | ||
22:00—次日08:00和12:00—17:00 | 0.36 | |
08:00—12:00和17:00—22:00 | 0.38 |
表 2 分时热价
Table 2 Time-sharing heat price
时段 | ||
22:00—次日08:00和12:00—17:00 | 0.36 | |
08:00—12:00和17:00—22:00 | 0.38 |
参数 | 数值 | 参数 | 数值 | |||
15 | 0.3 | |||||
10 | 0.3、0.4 | |||||
10 | 0.25、0.55 | |||||
0.9 | 3.0、0.95 |
表 3 机组参数
Table 3 Parameters of units
参数 | 数值 | 参数 | 数值 | |||
15 | 0.3 | |||||
10 | 0.3、0.4 | |||||
10 | 0.25、0.55 | |||||
0.9 | 3.0、0.95 |
参数 | 数值 | 参数 | 数值 | |||
0.35 | 2 | |||||
0.06 | 0.525 | |||||
0.25 | ||||||
300 | 300 | |||||
0.185 | 10 |
表 4 其他参数
Table 4 Other parameters
参数 | 数值 | 参数 | 数值 | |||
0.35 | 2 | |||||
0.06 | 0.525 | |||||
0.25 | ||||||
300 | 300 | |||||
0.185 | 10 |
场景 | CHP热电比 | CHP耦合 HP/EB | 能源站机组 动态碳排特性 | 需求响应 | ||||||||
固定 | 可调 | 价格 | 低碳 | |||||||||
1 | √ | × | √ | √ | × | × | ||||||
2 | × | √ | × | √ | × | × | ||||||
3 | × | √ | √ | √ | × | × | ||||||
4 | × | √ | √ | × | × | √ | ||||||
5 | × | √ | √ | √ | × | √ | ||||||
6 | × | √ | √ | √ | √ | × | ||||||
7 | × | √ | √ | √ | √ | √ |
表 5 场景设置
Table 5 Settings of scenarios
场景 | CHP热电比 | CHP耦合 HP/EB | 能源站机组 动态碳排特性 | 需求响应 | ||||||||
固定 | 可调 | 价格 | 低碳 | |||||||||
1 | √ | × | √ | √ | × | × | ||||||
2 | × | √ | × | √ | × | × | ||||||
3 | × | √ | √ | √ | × | × | ||||||
4 | × | √ | √ | × | × | √ | ||||||
5 | × | √ | √ | √ | × | √ | ||||||
6 | × | √ | √ | √ | √ | × | ||||||
7 | × | √ | √ | √ | √ | √ |
场景 | ||||||||||||||||||
1 | 0 | 164.1 | 0 | |||||||||||||||
2 | 0 | 156.8 | 0 | |||||||||||||||
3 | 0 | 151.9 | 0 | |||||||||||||||
4 | 0 | 192.7 | 289.6 | |||||||||||||||
5 | 0 | 149.5 | 641.1 | |||||||||||||||
6 | 0 | 152.9 | 0 | |||||||||||||||
7 | 0 | 152.2 | 211.6 |
表 6 不同场景的优化结果
Table 6 Optimization results for different scenarios
场景 | ||||||||||||||||||
1 | 0 | 164.1 | 0 | |||||||||||||||
2 | 0 | 156.8 | 0 | |||||||||||||||
3 | 0 | 151.9 | 0 | |||||||||||||||
4 | 0 | 192.7 | 289.6 | |||||||||||||||
5 | 0 | 149.5 | 641.1 | |||||||||||||||
6 | 0 | 152.9 | 0 | |||||||||||||||
7 | 0 | 152.2 | 211.6 |
1 | 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46 (8): 189- 207. |
ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46 (8): 189- 207. | |
2 |
ABDUL LATIF S N, CHIONG M S, RAJOO S, et al. The trend and status of energy resources and greenhouse gas emissions in the Malaysia power generation mix[J]. Energies, 2021, 14 (8): 2200.
DOI |
3 | 黎静华, 朱梦姝, 陆悦江, 等. 综合能源系统优化调度综述[J]. 电网技术, 2021, 45 (6): 2256- 2272. |
LI Jinghua, ZHU Mengshu, LU Yuejiang, et al. Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45 (6): 2256- 2272. | |
4 |
MCLAUGHLIN H, LITTLEFIELD A A, MENEFEE M, et al. Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world[J]. Renewable and Sustainable Energy Reviews, 2023, 177, 113215.
DOI |
5 |
HE L C, LU Z G, ZHANG J F, et al. Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas[J]. Applied Energy, 2018, 224, 357- 370.
DOI |
6 |
ZHANG G M, WANG W, CHEN Z Y, et al. Modeling and optimal dispatch of a carbon-cycle integrated energy system for low-carbon and economic operation[J]. Energy, 2022, 240, 122795.
DOI |
7 |
卫志农, 张思德, 孙国强, 等. 基于碳交易机制的电—气互联综合能源系统低碳经济运行[J]. 电力系统自动化, 2016, 40 (15): 9- 16.
DOI |
WEI Zhinong, ZHANG Side, SUN Guoqiang, et al. Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J]. Automation of Electric Power Systems, 2016, 40 (15): 9- 16.
DOI |
|
8 | 秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电—热—气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42 (14): 8- 13, 22. |
QIN Ting, LIU Huaidong, WANG Jinqiao, et al. Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J]. Automation of Electric Power Systems, 2018, 42 (14): 8- 13, 22. | |
9 | 王梦雪, 赵浩然, 刘春阳, 等. 基于碳熵指标的电-热互联综合能源系统碳轨迹追踪方法[J]. 电力系统自动化, 2023, 47 (9): 13- 22. |
WANG Mengxue, ZHAO Haoran, LIU Chunyang, et al. Carbon trajectory tracking method for electric-thermal interconnected integrated energy system based on carbon entropy index[J]. Automation of Electric Power Systems, 2023, 47 (9): 13- 22. | |
10 | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46 (3): 821- 833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46 (3): 821- 833. | |
11 |
KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow from generation to demand: a network-based model[J]. IEEE Transactions on Smart Grid, 2015, 6 (5): 2386- 2394.
DOI |
12 | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42 (8): 2830- 2842. |
LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42 (8): 2830- 2842. | |
13 |
CHENG Y H, ZHANG N, WANG Y, et al. Modeling carbon emission flow in multiple energy systems[J]. IEEE Transactions on Smart Grid, 2019, 10 (4): 3562- 3574.
DOI |
14 | 潘超, 范宫博, 王锦鹏, 等. 灵活性资源参与的电热综合能源系统低碳优化[J]. 电工技术学报, 2023, 38 (6): 1633- 1647. |
PAN Chao, FAN Gongbo, WANG Jinpeng, et al. Low-carbon optimization of electric and heating integrated energy system with flexible resource participation[J]. Transactions of China Electrotechnical Society, 2023, 38 (6): 1633- 1647. | |
15 | 叶宇静, 邢海军, 米阳, 等. 考虑低碳需求响应及主从博弈的综合能源系统低碳优化调度[J]. 电力系统自动化, 2024, 48 (9): 34- 43. |
YE Yujing, XING Haijun, MI Yang, et al. Low-carbon optimal dispatching of integrated energy system considering low-carbon demand response and stackelberg game[J]. Automation of Electric Power Systems, 2024, 48 (9): 34- 43. | |
16 | 刘学智, 严正, 解大, 等. 电热综合能源网的强耦合路径研究与展望[J]. 电力系统自动化, 2022, 46 (13): 204- 215. |
LIU Xuezhi, YAN Zheng, XIE Da, et al. Research and prospect of strong coupling pathway for electricity-heat integrated energy network[J]. Automation of Electric Power Systems, 2022, 46 (13): 204- 215. | |
17 | 崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41 (3): 10- 17. |
CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric Power Automation Equipment, 2021, 41 (3): 10- 17. | |
18 | 于东立, 曹军, 屠聪为, 等. 考虑线性化网络约束的电-热多能源系统最优能量流分析[J]. 中国电机工程学报, 2019, 39 (7): 1933- 1944. |
YU Dongli, CAO Jun, TU Congwei, et al. Optimal energy flow of combined electrical and heating multi-energy system considering the linear network constraints[J]. Proceedings of the CSEE, 2019, 39 (7): 1933- 1944. | |
19 | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56 (3): 162- 172. |
CHEN Jiaxing, WANG Chunling, LIU Chunming. Dynamic low-carbon dispatching method of power system based on improved carbon emission flow theory[J]. Electric Power, 2023, 56 (3): 162- 172. | |
20 | 陈公达, 傅诗万, 蔡秀霞, 等. 基于前后端在线监测的燃气发电机组碳排放特性与影响因素分析[J]. 热力发电, 2024, 53 (6): 96- 105. |
CHEN Gongda, FU Shiwan, CAI Xiuxia, et al. The carbon emission characteristics and influencing factors of gas generator unit based on online monitoring of front-end and back-end[J]. Thermal Power Generation, 2024, 53 (6): 96- 105. | |
21 | 张笑演, 王橹裕, 黄蕾, 等. 考虑扩展碳排放流和碳交易议价模型的园区综合能源优化调度[J]. 电力系统自动化, 2023, 47 (9): 34- 46. |
ZHANG Xiaoyan, WANG Luyu, HUANG Lei, et al. Optimal dispatching of park-level integrated energy system considering augmented carbon emission flow and carbon trading bargain model[J]. Automation of Electric Power Systems, 2023, 47 (9): 34- 46. | |
22 | 宋泽淏, 冯华, 陈晓刚, 等. 基于节点碳势的配电网分布式资源低碳调度策略[J]. 高电压技术, 2023, 49 (6): 2320- 2332. |
SONG Zehao, FENG Hua, CHEN Xiaogang, et al. Low-carbon scheduling strategy of distributed energy resources based on node carbon intensity for distribution networks[J]. High Voltage Engineering, 2023, 49 (6): 2320- 2332. | |
23 | 康重庆, 程耀华, 孙彦龙, 等. 电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41 (18): 10- 16. |
KANG Chongqing, CHENG Yaohua, SUN Yanlong, et al. Recursive calculation method of carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2017, 41 (18): 10- 16. | |
24 | 韩赫, 张沛超, 杜炜, 等. 量调节方式下区域热电系统的联合最优潮流[J]. 电力系统自动化, 2021, 45 (2): 30- 36. |
HAN He, ZHANG Peichao, DU Wei, et al. Joint optimal power flow of district heat-electric system in quantity regulation mode[J]. Automation of Electric Power Systems, 2021, 45 (2): 30- 36. | |
25 | CAO Y, WEI W, WU L, et al. Decentralized operation of interdependent power distribution network and district heating network: a market-driven approach[J]. IEEE Transactions on Smart Grid, 2018, 10 (5): 5374- 5385. |
26 | LI R, WEI W, MEI S W, et al. Participation of an energy hub in electricity and heat distribution markets: an MPEC approach[J]. IEEE Transactions on Smart Grid, 2018, 10 (4): 3641- 3653. |
[1] | 沈舒仪, 王国腾, 但扬清, 孙飞飞, 黄莹, 徐政. 频率偏差与电压刚度约束下多馈入直流优化调度方法[J]. 中国电力, 2025, 58(3): 132-141. |
[2] | 李金, 刘科孟, 许丹莉, 高为举, 黄磊, 吴浩星, 华昊辰. 基于共享储能站的多能互补微能源网外衍响应双层优化[J]. 中国电力, 2025, 58(2): 43-56. |
[3] | 李明冰, 李强, 管西洋, 周皓阳, 卢瑞, 冯延坤. 市场环境下考虑多元用户侧资源协同的虚拟电厂低碳优化调度[J]. 中国电力, 2025, 58(2): 66-76. |
[4] | 周建华, 梁昌誉, 史林军, 李杨, 易文飞. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 77-87. |
[5] | 张玉敏, 尹延宾, 吉兴全, 叶平峰, 孙东磊, 宋爱全. 计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 88-102. |
[6] | 闫志彬, 李立, 阳鹏, 宋蕙慧, 车彬, 靳盘龙. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58(2): 103-110. |
[7] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
[8] | 王云龙, 韩璐, 罗树林, 吴涛. 集成电动汽车的家庭电热综合能源系统负荷调度优化[J]. 中国电力, 2024, 57(5): 39-49. |
[9] | 吕志鹏, 宋振浩, 李立生, 刘洋. 含电动汽车的工业园区综合能源系统优化调度[J]. 中国电力, 2024, 57(4): 25-31. |
[10] | 陈苏豪, 吴越, 曾伟, 杨晓辉, 王晓鹏, 伍云飞. 基于NNC法和DMC算法的CCHP型微电网两阶段调度[J]. 中国电力, 2024, 57(2): 171-182. |
[11] | 张栋顺, 全恒立, 谢桦, 许志鸿, 陶雅芸, 王慧圣. 考虑碳交易机制与氢混天然气的园区综合能源系统调度策略[J]. 中国电力, 2024, 57(2): 183-193. |
[12] | 张颖, 文艳, 季宇, 左娟, 王文博. 基于目标级联法的虚拟电厂日前调频容量计算方法[J]. 中国电力, 2024, 57(1): 82-90. |
[13] | 张超, 赵冬梅, 季宇, 张颖. 基于改进深度Q网络的虚拟电厂实时优化调度[J]. 中国电力, 2024, 57(1): 91-100. |
[14] | 孙志媛, 彭博雅, 孙艳. 考虑多能互补的电力电量平衡优化调度策略[J]. 中国电力, 2024, 57(1): 115-122. |
[15] | 晁文浩, 袁至, 李骥. 计及电转气-风-火-核-碳捕集的多源联合系统优化调度[J]. 中国电力, 2024, 57(1): 183-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||