1 |
李立浧, 郭剑波, 饶宏. 智能电网与能源网融合技术[M]. 北京: 机械工业出版社, 2018.
|
2 |
潘卫国, 陶邦彦, 俞谷颖. 分布式能源技术及应用[M]. 上海: 上海交通大学出版社, 2019.
|
3 |
董明珠, 谭建明, 张雪芬, 等. 全联接全开放的分布式能源信息智能网络[J]. 制冷与空调, 2017, 17 (5): 5- 9, 23.
|
|
DONG Mingzhu, TAN Jianming, ZHANG Xuefen, et al. Complete open and interconnection of distributed energy & information intelligent Internet[J]. Refrigeration and Air-Conditioning, 2017, 17 (5): 5- 9, 23.
|
4 |
王珂, 姚建国, 姚良忠, 等. 电力柔性负荷调度研究综述[J]. 电力系统自动化, 2014, 38 (20): 127- 135.
|
|
WANG Ke, YAO Jianguo, YAO Liangzhong, et al. Survey of research on flexible loads scheduling technologies[J]. Automation of Electric Power Systems, 2014, 38 (20): 127- 135.
|
5 |
犹锋, 张华鲁, 石杰, 等. 基于云边协同技术的柔性负荷聚合调控系统设计[J]. 供用电, 2021, 38 (12): 64- 73.
|
|
YOU Feng, ZHANG Hualu, SHI Jie, et al. Design of flexible load aggregation regulation system based on cloud edge collaboration technology[J]. Distribution & Utilization, 2021, 38 (12): 64- 73.
|
6 |
郭崇, 王征, 纪建伟. 需求侧响应下的电力负荷预测模型的改进[J]. 科学技术与工程, 2016, 16 (20): 186- 190.
DOI
|
|
GUO Chong, WANG Zheng, JI Jianwei. The improvement of power load prediction model in the case of demand side response[J]. Science Technology and Engineering, 2016, 16 (20): 186- 190.
DOI
|
7 |
陈璐, 杨永标, 徐青山. 基于时变互补特性的聚合空调调控及恢复策略[J]. 电力系统自动化, 2020, 44 (13): 39- 47.
|
|
CHEN Lu, YANG Yongbiao, XU Qingshan. Coordinated control and recovery strategy for aggregated air-conditioner based on time-variant complementary characteristics[J]. Automation of Electric Power Systems, 2020, 44 (13): 39- 47.
|
8 |
吴桐, 惠红勋, 张洪财. 商业建筑空调系统参与城市电网负荷调控综述[J]. 中国电力, 2023, 56 (7): 1- 11.
|
|
WU Tong, HUI Hongxun, ZHANG Hongcai. Review of commercial air conditioners for participating in urban grid regulation[J]. Electric Power, 2023, 56 (7): 1- 11.
|
9 |
丁胜, 徐承美, 饶尧, 等. 楼宇空调需求响应实时控制仿真与实践研究[J]. 电力需求侧管理, 2022, 24 (6): 91- 98.
|
|
DING Sheng, XU Chengmei, RAO Yao, et al. Simulation and practice on demand response real-time control of building air conditioning[J]. Power Demand Side Management, 2022, 24 (6): 91- 98.
|
10 |
GENG Q, HU Y, HE J Z, et al. Optimal operation of AC–DC distribution network with multi park integrated energy subnetworks considering flexibility[J]. IET Renewable Power Generation, 2020, 14 (6): 1004- 1019.
DOI
|
11 |
张彦军, 段鹏飞, 赵亮, 等. 分布式能源区域调控系统功率柔性控制方法[J]. 电气自动化, 2023, 45 (2): 49- 51.
|
|
ZHANG Yanjun, DUAN Pengfei, ZHAO Liang, et al. Power flexible control method of distributed energy regional regulation system[J]. Electrical Automation, 2023, 45 (2): 49- 51.
|
12 |
郭旭歆, 高赐威, 王朝亮, 等. 基于中央空调虚拟储能模型的调峰策略研究[J]. 电力需求侧管理, 2022, 24 (4): 42- 46.
|
|
GUO Xuxin, GAO Ciwei, WANG Chaoliang, et al. Peak adjustment strategy based on central air conditioning virtual energy storage model[J]. Power Demand Side Management, 2022, 24 (4): 42- 46.
|
13 |
戚野白, 王丹, 贾宏杰, 等. 基于归一化温度延伸裕度控制策略的温控设备需求响应方法研究[J]. 中国电机工程学报, 2015, 35 (21): 5455- 5464.
|
|
QI Yebai, WANG Dan, JIA Hongjie, et al. Research on demand response for thermostatically controlled appliances based on normalized temperature extension margin control strategy[J]. Proceedings of the CSEE, 2015, 35 (21): 5455- 5464.
|
14 |
LOWRY G. Day-ahead forecasting of grid carbon intensity in support of heating, ventilation and air-conditioning plant demand response decision-making to reduce carbon emissions[J]. Building Services Engineering Research and Technology, 2018, 39 (6): 749- 760.
|
15 |
CAMPBELL N A, PHELAN P E, PEINADO-GUERRERO M, et al. Improved air-conditioning demand response of connected communities over individually optimized buildings[J]. Energies, 2021, 14 (18): 5926.
|
16 |
甘萌莹. 基于智能合约的“源储网荷” 本地能源微网交易模型设计[J]. 通信电源技术, 2018, 35 (6): 93- 95, 98.
|
|
GAN Mengying. Design of a local energy micro network transaction model based on intelligent contract[J]. Telecom Power Technology, 2018, 35 (6): 93- 95, 98.
|
17 |
李滨, 黎智能, 陈碧云. 电力市场中配电网的空调群调控策略[J]. 电力系统自动化, 2019, 43 (15): 124- 131.
|
|
LI Bin, LI Zhineng, CHEN Biyun. Air conditioning group dispatch control strategy of distribution network in electricity market[J]. Automation of Electric Power Systems, 2019, 43 (15): 124- 131.
|
18 |
刘利兵, 刘天琪. 参与需求侧响应的空调负荷群调节控制方法及优化调度策略[J]. 工程科学与技术, 2017, 49 (S1): 175- 182.
|
|
LIU Libing, LIU Tianqi. A control strategy of air-conditioning load groups and optimization scheduling as demand-side resources participating in grid[J]. Advanced Engineering Sciences, 2017, 49 (S1): 175- 182.
|
19 |
ZHAO J, SHAN Y. A fuzzy control strategy using the load forecast for air conditioning system[J]. Energies, 2020, 13 (3): 530.
DOI
|
20 |
王福忠, 李润宇, 张宏伟, 等. 电力需求侧空调负荷柔性调控策略研究[J]. 电子科技, 2021, 34 (8): 58- 63.
|
|
WANG Fuzhong, LI Runyu, ZHANG Hongwei, et al. Research on flexible load control strategy of air conditioning in power demand side[J]. Electronic Science and Technology, 2021, 34 (8): 58- 63.
|
21 |
卢健斌, 韩帅, 孙乐平, 等. 建筑中央空调参与电网高峰负荷调控实证分析[J]. 广西电力, 2022, 45 (5): 58- 62.
|
|
LU Jianbin, HAN Shuai, SUN Leping, et al. Empirical analysis of power grid peak load regulation with building central air conditioning participated[J]. Guangxi Electric Power, 2022, 45 (5): 58- 62.
|
22 |
许朝阳, 阮文骏, 肖楚鹏, 等. 支撑负荷侧资源柔性调控的新型电力负荷管理系统研究[J]. 电力需求侧管理, 2022, 24 (5): 8- 14.
|
|
XU Zhaoyang, RUAN Wenjun, XIAO Chupeng, et al. A new power load management system supporting flexible regulation of load-side resources[J]. Power Demand Side Management, 2022, 24 (5): 8- 14.
|
23 |
文刚, 翁维华, 赵岩, 等. 考虑负荷聚集商参与的源荷互动双层优化模型[J]. 电网技术, 2017, 41 (12): 3956- 3963.
|
|
WEN Gang, WENG Weihua, ZHAO Yan, et al. A bi-level optimal dispatching model considering source-load interaction integrated with load aggregator[J]. Power System Technology, 2017, 41 (12): 3956- 3963.
|
24 |
张海滨. 基于虚拟调频机组的空调负荷参与电网调频控制策略研究[J]. 吉林电力, 2023, 51 (1): 10- 14.
|
|
ZHANG Haibin. Research on control strategy of air conditioning loads participating in power grid frequency regulation based on virtual frequency regulation unit[J]. Jilin Electric Power, 2023, 51 (1): 10- 14.
|
25 |
王洪达, 杨曼, 周煜韬, 等. 大功率柔性互联设备的有功互济协调控制方法[J]. 国防科技大学学报, 2023, 45 (2): 37- 44.
DOI
|
|
WANG Hongda, YANG Man, ZHOU Yutao, et al. Coordinated control method of active power cooperation for high power flexible interconnected equipment[J]. Journal of National University of Defense Technology, 2023, 45 (2): 37- 44.
DOI
|