中国电力 ›› 2024, Vol. 57 ›› Issue (10): 133-142.DOI: 10.11930/j.issn.1004-9649.202405007
胡云鹏1(), 都成刚1(
), 齐军2(
), 郑日红2, 阿敏夫3, 张浩4, 梁永亮4(
)
收稿日期:
2024-05-06
出版日期:
2024-10-28
发布日期:
2024-10-25
作者简介:
胡云鹏(1974—),男,高级工程师,从事电网二次继电保护研究,E-mail:huyp@nrec.com基金资助:
Yunpeng HU1(), Chenggang DU1(
), Jun QI2(
), Rihong ZHENG2, Minfu A3, Hao ZHANG4, Yongliang LIANG4(
)
Received:
2024-05-06
Online:
2024-10-28
Published:
2024-10-25
Supported by:
摘要:
单相接地故障(single-phase-to-ground fault,SPGF)是配电网中最常见的故障,严重影响配电系统的可靠性和安全性,准确辨识SPGF可以提高配电网接地故障处理的精细化水平。首先,从故障波形中提取能有效反映不同接地故障原因的多域特征组成候选波形特征集,通过多元方差法分析波形特征与接地故障原因的相关性,筛选识别接地故障原因的有效特征;然后,分别设计基于极限学习机和支持向量机的故障原因辨识模型,利用Dempster-Shafer(D-S)证据融合理论对模型的识别结果进行融合,建立了接地故障原因综合辨识模型;最后,基于现场数据对所建立的综合辨识模型的有效性进行了验证,结果表明综合辨识模型优于任何单一辨识模型,验证了该模型的优势和可行性。
胡云鹏, 都成刚, 齐军, 郑日红, 阿敏夫, 张浩, 梁永亮. 基于D-S证据理论的配电网接地故障原因综合辨识模型[J]. 中国电力, 2024, 57(10): 133-142.
Yunpeng HU, Chenggang DU, Jun QI, Rihong ZHENG, Minfu A, Hao ZHANG, Yongliang LIANG. D-S Evidence Theory Based Comprehensive Identification Model for Cause of Grounding Fault in Distribution Network[J]. Electric Power, 2024, 57(10): 133-142.
符号 | 接地故障原因 | |
F1 | 避雷器击穿 | |
F2 | 线路到横杆放电 | |
F3 | 电缆绝缘损坏 | |
F4 | 绝缘子击穿 | |
F5 | 树形触点 | |
F6 | 其他原因 |
表 1 故障原因及其对应符号
Table 1 Fault types and their corresponding symbols
符号 | 接地故障原因 | |
F1 | 避雷器击穿 | |
F2 | 线路到横杆放电 | |
F3 | 电缆绝缘损坏 | |
F4 | 绝缘子击穿 | |
F5 | 树形触点 | |
F6 | 其他原因 |
波形特点 | F-数据 | 排序 | ||
C3 | 289.64 | 1 | ||
C2 | 235.40 | 2 | ||
C1 | 120.25 | 3 | ||
C4 | 115.25 | 4 | ||
C10 | 108.65 | 5 | ||
C11 | 83.13 | 6 | ||
C5 | 79.84 | 7 | ||
C9 | 39.94 | 8 | ||
C6 | 18.96 | 9 | ||
C8 | 10.78 | 10 | ||
C7 | 10.61 | 11 |
表 2 基于MANOVA的波形特征统计结果
Table 2 Statistical results for waveform features based on MANOVA
波形特点 | F-数据 | 排序 | ||
C3 | 289.64 | 1 | ||
C2 | 235.40 | 2 | ||
C1 | 120.25 | 3 | ||
C4 | 115.25 | 4 | ||
C10 | 108.65 | 5 | ||
C11 | 83.13 | 6 | ||
C5 | 79.84 | 7 | ||
C9 | 39.94 | 8 | ||
C6 | 18.96 | 9 | ||
C8 | 10.78 | 10 | ||
C7 | 10.61 | 11 |
故障原因 | 数量 | |
F1 | 61 | |
F2 | 61 | |
F3 | 61 | |
F4 | 55 | |
F5 | 59 | |
F6 | 145 |
表 3 每种故障原因的数据大小
Table 3 Data size for each fault type
故障原因 | 数量 | |
F1 | 61 | |
F2 | 61 | |
F3 | 61 | |
F4 | 55 | |
F5 | 59 | |
F6 | 145 |
激活功能 | 隐藏层神经元数量 | |||||||||
11 | 15 | 20 | 25 | 30 | ||||||
sig | 88.1 | 89.1 | 91.6 | 90.1 | 90.6 | |||||
sin | 85.6 | 86.6 | 87.6 | 87.6 | 87.1 | |||||
hardlim | 75.7 | 80.2 | 80.7 | 80.7 | 83.7 |
表 4 不同实例的诊断准确性
Table 4 Diagnostic accuracy for different cases
激活功能 | 隐藏层神经元数量 | |||||||||
11 | 15 | 20 | 25 | 30 | ||||||
sig | 88.1 | 89.1 | 91.6 | 90.1 | 90.6 | |||||
sin | 85.6 | 86.6 | 87.6 | 87.6 | 87.1 | |||||
hardlim | 75.7 | 80.2 | 80.7 | 80.7 | 83.7 |
故障原因 | 测试数据 | 识别准确率/% | ||
F1 | 21 | 100 | ||
F2 | 21 | 100 | ||
F3 | 21 | 90.5 | ||
F4 | 15 | 93.3 | ||
F5 | 19 | 89.5 | ||
F6 | 105 | 93.3 | ||
总计 | 202 | 94.1 |
表 5 不同故障原因的测试集数据大小和识别准确率
Table 5 Test set data size and recognition accuracy rate for different fault types
故障原因 | 测试数据 | 识别准确率/% | ||
F1 | 21 | 100 | ||
F2 | 21 | 100 | ||
F3 | 21 | 90.5 | ||
F4 | 15 | 93.3 | ||
F5 | 19 | 89.5 | ||
F6 | 105 | 93.3 | ||
总计 | 202 | 94.1 |
实际故障 | 识别方法 | |||||
ELM | SVM | 融合模型 | ||||
F3 | F3 | F3 | F3 | |||
F3 | F2 | F3 | F3 | |||
F3 | F3 | F3 | F3 | |||
F3 | F3 | F3 | F3 | |||
F4 | F3 | F4 | F4 | |||
F4 | F4 | F4 | F4 | |||
F4 | F4 | F4 | F4 | |||
F5 | F5 | F4 | F5 | |||
F5 | F5 | F4 | F5 |
表 6 部分数据识别结果
Table 6 Recognition results of partial data
实际故障 | 识别方法 | |||||
ELM | SVM | 融合模型 | ||||
F3 | F3 | F3 | F3 | |||
F3 | F2 | F3 | F3 | |||
F3 | F3 | F3 | F3 | |||
F3 | F3 | F3 | F3 | |||
F4 | F3 | F4 | F4 | |||
F4 | F4 | F4 | F4 | |||
F4 | F4 | F4 | F4 | |||
F5 | F5 | F4 | F5 | |||
F5 | F5 | F4 | F5 |
1 |
刘洪波, 刘珅诚, 盖雪扬, 等. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45 (1): 151- 161.
DOI |
LIU Hongbo, LIU Shencheng, GAI Xueyang, et al. Overview of active distribution network planning with high proportion of new energy access[J]. Power Generation Technology, 2024, 45 (1): 151- 161.
DOI |
|
2 | 吴江雄, 郑茂然, 王欣, 等. 基于暂态零序导纳值的谐振接地系统单相接地故障选线方法[J/OL]. 南方电网技术, 2024: 1–9. (2024-04-26). https://kns.cnki.net/kcms/detail/44.1643.TK.20240424.1107.002.html. |
WU Jiangxiong, ZHENG Maoran, WANG Xin, et al. Single-phase grounding fault line selection method for resonant grounding system based on transient zero-sequence admittance value[J/OL]. Southern Power System Technology, 2024: 1–9. (2024-04-26). https://kns.cnki.net/kcms/detail/44.1643.TK.20240424.1107.002.html. | |
3 | 王晓卫, 岳阳, 郭亮, 等. 注入电流分布特性辨识的配电网故障选线方法[J/OL]. 中国电力, 2024: 1–12. (2024-02-26). https://kns.cnki.net/kcms/detail/11.3265.TM.20240226.1229.004.html. |
WANG Xiaowei, YUE Yang, GUO Liang, et al. Fault line selection method for distribution network based on injection current distribution characteristics identification[J/OL]. Electric Power, 2024: 1–12. (2024-02-26). https://kns.cnki.net/kcms/detail/11.3265.TM.20240226.1229.004.html. | |
4 | 徐丙垠, 李天友, 薛永端. 配电网继电保护与自动化[M]. 北京: 中国电力出版社, 2017. |
5 | AN J G, SONG J U, OH Y S. A fuzzy-based fault section identification method using dynamic partial tree in distribution systems[J]. International Journal of Electrical Power & Energy Systems, 2023, 153, 109344. |
6 |
LI B H, CHENG T F, JIANG Q, et al. Faulty feeders identification for single-phase-to-ground fault based on multi-features and machine learning[J]. IEEE Transactions on Industry Applications, 2023, 59 (6): 7259- 7270.
DOI |
7 | YOU J L, ZHANG D, GONG Q W, et al. Fault phase selection method of distribution network based on wavelet singular entropy and DBN[C]//2022 China International Conference on Electricity Distribution (CICED). Changsha, China. IEEE, 2022: 1742–1747. |
8 | 黄亚峰, 王浩天, 朱登宝, 等. 基于零序电流特性的中性点灵活接地系统的故障选线方法[J]. 东北电力大学学报, 2023, 43 (3): 16- 22, 71. |
HUANG Yafeng, WANG Haotian, ZHU Dengbao, et al. Fault line selection method for neutral flexible grounding system based on zero sequence current characteristics[J]. Journal of Northeast Electric Power University, 2023, 43 (3): 16- 22, 71. | |
9 | 李泽文, 黎文娇, 彭维馨, 等. 基于IHHT-RF的配电网单相接地故障选线方法[J]. 电力科学与技术学报, 2024, 39 (1): 171- 182. |
LI Zewen, LI Wenjiao, PENG Weixin, et al. Single-phase-to-ground fault line selection method of distribution network based on IHHT-RF[J]. Journal of Electric Power Science and Technology, 2024, 39 (1): 171- 182. | |
10 | 喻锟, 倪聪, 曾祥君, 等. 中性点柔性接地配电网故障相恢复电压暂态时域特征分析[J]. 中国电机工程学报, 2024, 44 (3): 992- 1007. |
YU Kun, NI Cong, ZENG Xiangjun, et al. Analysis of transient time domain characteristics of fault phase recovery voltage in neutral flexible grounding distribution networks[J]. Proceedings of the CSEE, 2024, 44 (3): 992- 1007. | |
11 | 张玉玺, 王增平, 李振钊, 等. 基于特征频带暂态无功功率的配电网故障选线新方法[J]. 电力系统保护与控制, 2023, 51 (1): 1- 11. |
ZHANG Yuxi, WANG Zengping, LI Zhenzhao, et al. A new method of fault line selection in a distribution network based on characteristic frequency band transient reactive power[J]. Power System Protection and Control, 2023, 51 (1): 1- 11. | |
12 | 刘丰, 曾祥君, 谢李为, 等. 基于相电压差值极性的配电网单相接地故障检测方法[J]. 电力系统保护与控制, 2023, 51 (15): 155- 165. |
LIU Feng, ZENG Xiangjun, XIE Liwei, et al. Single-phase grounding fault detection method for a distribution network based on phase voltage difference polarity value[J]. Power System Protection and Control, 2023, 51 (15): 155- 165. | |
13 | 白浩, 潘姝慧, 邵向潮, 等. 基于小波去噪与随机森林的配电网高阻接地故障半监督识别方法[J]. 电力系统保护与控制, 2022, 50 (20): 79- 87. |
BAI Hao, PAN Shuhui, SHAO Xiangchao, et al. A high impedance grounding fault semi-supervised identification method based on wavelet denoising and random forest[J]. Power System Protection and Control, 2022, 50 (20): 79- 87. | |
14 | 吴岩, 关石磊, 孟晓丽, 等. 综合多域特征及融合算法的配电网单相接地故障类型识别[J]. 高电压技术, 2023, 49 (5): 2059- 2067. |
WU Yan, GUAN Shilei, MENG Xiaoli, et al. Classification of single-phase ground faults in distribution network based on multi-domain features and fusion algorithm[J]. High Voltage Engineering, 2023, 49 (5): 2059- 2067. | |
15 | XI Y H, LI M T, ZHOU F, et al. SE-inception-ResNet model with focal loss for transmission line fault classification under class imbalance[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73, 3500917. |
16 |
梁钟颖, 周凯, 孟鹏飞, 等. 基于频域反射系数谱的电缆故障定位与故障类型识别方法研究[J]. 电工电能新技术, 2022, 41 (8): 79- 88.
DOI |
LIANG Zhongying, ZHOU Kai, MENG Pengfei, et al. Research on cable fault location and fault type identification based on frequency domain reflection coefficient spectrum[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41 (8): 79- 88.
DOI |
|
17 | 赵书静, 龚梁涛, 詹博博, 等. 基于FMCW的10kV配电电缆故障定位及类型识别方法[J]. 中国电机工程学报, 2023, 43 (11): 4452- 4463. |
ZHAO Shujing, GONG Liangtao, ZHAN Bobo, et al. 10kV cable fault location and type identification method based on FMCW[J]. Proceedings of the CSEE, 2023, 43 (11): 4452- 4463. | |
18 | XIANG N W, PAN Y F, WANG C Q. Study on the discharge and defect characteristics of the binding wire to the insulated conductor in the distribution network[C]//2023 IEEE 6th International Electrical and Energy Conference (CIEEC). Hefei, China. IEEE, 2023: 3499-3502. |
19 |
ZHOU L J, TIAN Y, CHEN W J, et al. Characteristics of partial discharge on 10 kV covered conductor around tower head[J]. IEEE Access, 2022, 10, 98140- 98152.
DOI |
20 | LIU J, HAN B G, LIANG Y L, et al. Fusion model for recognition of single-phase-to-ground fault caused by insulation deterioration in medium-voltage distribution networks[C]//2022 China International Conference on Electricity Distribution (CICED). Changsha, China. IEEE, 2022: 1456–1461. |
21 | LIANG H Q, LIU Y D, SHENG G H, et al. Fault-cause identification method based on adaptive deep belief network and time–frequency characteristics of travelling wave[J]. IET Generation, Transmission & Distribution, 2019, 13(5): 724–732. |
22 |
GEIGER B C, KOCH T. On the information dimension of stochastic processes[J]. IEEE Transactions on Information Theory, 2019, 65 (10): 6496- 6518.
DOI |
23 | 常雪. 中压配电电缆潜伏性故障辨识方法研究[D]. 济南: 山东大学, 2023. |
CHANG Xue. Research on identification method of latent fault of medium voltage distribution cables[D]. Jinan: Shandong University, 2023. | |
24 | 刘科研, 詹惠瑜, 谭云耀, 等. 基于改进极限学习机的配电网高阻接地故障检测方案[J]. 电网技术, 2023, 47 (5): 1886- 1899. |
LIU Keyan, ZHAN Huiyu, TAN Yunyao, et al. High impedance grounding fault detection in distribution network based on improved extreme learning machine[J]. Power System Technology, 2023, 47 (5): 1886- 1899. | |
25 |
ZHANG J W, JIA H Y, ZHANG N. Alternate support vector machine decision trees for power systems rule extractions[J]. IEEE Transactions on Power Systems, 2023, 38 (1): 980- 983.
DOI |
26 | 钟鸣, 陶军, 刘洵宇, 等. 智能变电站光纤虚实回路映射及故障诊断技术[J]. 中国电力, 2023, 56 (10): 171- 178. |
ZHONG Ming, TAO Jun, LIU Xunyu, et al. Smart substation optical fiber virtual and real loop mapping and fault diagnosis technology[J]. Electric Power, 2023, 56 (10): 171- 178. |
[1] | 席磊, 王艺晓, 何苗, 程琛, 田习龙. 基于反向鲸鱼-多隐层极限学习机的电网FDIA检测[J]. 中国电力, 2024, 57(9): 20-31. |
[2] | 郭亮, 屈新宇, 王晓卫, 王毅钊, 田影, 张帆. 基于改进Hough变换的消弧线圈接地配电网故障选线新方法[J]. 中国电力, 2024, 57(7): 132-142. |
[3] | 郑鹏, 韩鹏程, 王国栋, 娄颖. 中压配电线路断线高阻接地故障精细化诊断方法[J]. 中国电力, 2024, 57(4): 220-228. |
[4] | 王晓卫, 岳阳, 郭亮, 王雪, 王毅钊, 张志华, 杨峰峰. 注入电流分布特性辨识的配电网故障选线方法[J]. 中国电力, 2024, 57(10): 78-89. |
[5] | 王尧平, 李特, 姜凯华, 李文辉, 吴强, 王羽. 基于气象特征挖掘与AdaBoost-MEA-ELM模型的绝缘子盐密预测[J]. 中国电力, 2023, 56(9): 157-167. |
[6] | 叶远波, 章昊, 王同文, 王志华, 陈勇. 基于边缘物联的电力系统二次继保设备测试管控技术[J]. 中国电力, 2023, 56(7): 156-162,174. |
[7] | 安佳坤, 杨书强, 王涛, 贺春光, 张菁, 袁超, 窦春霞. 电动汽车聚合下的微能源互联网优化调度策略[J]. 中国电力, 2023, 56(5): 80-88. |
[8] | 徐一伦, 张彬桥, 黄婧, 谢枭, 王若昕, 沈丹青, 何丽娜, 杨凯帆. 考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J]. 中国电力, 2023, 56(2): 143-149. |
[9] | 韩伟, 段文岩, 杜兴伟, 姚峰, 马伟东, 刘磊. 基于数字孪生的在运安控系统故障诊断方法[J]. 中国电力, 2023, 56(11): 121-127. |
[10] | 钟鸣, 陶军, 刘洵宇, 杨逸, 杨炳元. 智能变电站光纤虚实回路映射及故障诊断技术[J]. 中国电力, 2023, 56(10): 171-178. |
[11] | 严亚兵, 褚旭, 肖豪龙, 梁文武, 李辉, 夏振兴. 基于改进支持向量机的数字化变电站安全措施生成技术[J]. 中国电力, 2023, 56(10): 194-201. |
[12] | 刘昳娟, 陈云龙, 刘继彦, 张雪梅, 吴潇雨, 孔维政. 基于集成学习的分布式光伏发电功率日前预测[J]. 中国电力, 2022, 55(9): 38-45. |
[13] | 陈铁, 冷昊伟, 李咸善, 陈一夫. 基于油中气体分析与类重叠特征的变压器分层故障诊断模型[J]. 中国电力, 2022, 55(7): 22-32,41. |
[14] | 彭生江, 孙传帅, 妥建军, 袁铁江. 面向统一能源系统的中长期氢负荷预测[J]. 中国电力, 2022, 55(1): 84-90. |
[15] | 李登峰, 杨旼才, 刘育明, 徐瑞林, 余霞, 李昭炯. 基于SVR数据驱动的发电机进相极限最优化求解方法[J]. 中国电力, 2021, 54(8): 136-143,153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||