中国电力 ›› 2024, Vol. 57 ›› Issue (10): 133-142.DOI: 10.11930/j.issn.1004-9649.202405007

• 新型配电系统保护与控制关键技术 • 上一篇    下一篇

基于D-S证据理论的配电网接地故障原因综合辨识模型

胡云鹏1(), 都成刚1(), 齐军2(), 郑日红2, 阿敏夫3, 张浩4, 梁永亮4()   

  1. 1. 南京南瑞继保电气有限公司,江苏 南京 211102
    2. 内蒙古电力(集团)有限责任公司 阿拉善供电分公司,内蒙古 阿拉善盟 750306
    3. 内蒙古电力(集团)有限责任公司,内蒙古 呼和浩特 010010
    4. 山东大学 电气工程学院,山东 济南 250061
  • 收稿日期:2024-05-06 出版日期:2024-10-28 发布日期:2024-10-25
  • 作者简介:胡云鹏(1974—),男,高级工程师,从事电网二次继电保护研究,E-mail:huyp@nrec.com
    都成刚(1976—),男,硕士,高级工程师,从事电力系统自动化研究,E-mail:13912950066@163.com
    齐军(1979—),男,硕士,高级工程师(教授级),长期从事电力系统安全稳定运行与控制工作,E-mail:qmvu@163.com
    梁永亮(1987—),男,通信作者,博士,副研究员,从事配电网接地故障辨识研究,E-mail:liangyl@sdu.edu.cn
  • 基金资助:
    内蒙古电力(集团)有限责任公司科技项目(2022JBGS0044)。

D-S Evidence Theory Based Comprehensive Identification Model for Cause of Grounding Fault in Distribution Network

Yunpeng HU1(), Chenggang DU1(), Jun QI2(), Rihong ZHENG2, Minfu A3, Hao ZHANG4, Yongliang LIANG4()   

  1. 1. NR Electric Co., Ltd. Nanjing, Nanjing 211102, China
    2. Alxa Power Supply Branch, Inner Mongolia Electric Power (Group) Co., Ltd. Alxa League, Inner Mongolia 750306, China
    3. Inner Mongolia Electric Power (Group) Co., Ltd. Hohhot, Inner Mongolia 010010, China
    4. School of Electrical Engineering, Shandong University. Jinan 250061, China
  • Received:2024-05-06 Online:2024-10-28 Published:2024-10-25
  • Supported by:
    This work is supported by Science and technology project of Inner Mongolia Electric Power (Group) Co., Ltd. (No.2022JBGS0044)

摘要:

单相接地故障(single-phase-to-ground fault,SPGF)是配电网中最常见的故障,严重影响配电系统的可靠性和安全性,准确辨识SPGF可以提高配电网接地故障处理的精细化水平。首先,从故障波形中提取能有效反映不同接地故障原因的多域特征组成候选波形特征集,通过多元方差法分析波形特征与接地故障原因的相关性,筛选识别接地故障原因的有效特征;然后,分别设计基于极限学习机和支持向量机的故障原因辨识模型,利用Dempster-Shafer(D-S)证据融合理论对模型的识别结果进行融合,建立了接地故障原因综合辨识模型;最后,基于现场数据对所建立的综合辨识模型的有效性进行了验证,结果表明综合辨识模型优于任何单一辨识模型,验证了该模型的优势和可行性。

关键词: 接地故障原因, 单相接地故障, 极限学习机, 支持向量机, D-S证据理论

Abstract:

Single-phase-to-ground fault (SPGF), being the most prevalent issue in distribution networks, significantly impacts the reliability and safety of the distribution system. Accurate identification of SPGF can enhance the level of refinement in handling grounding faults in distribution networks. Firstly, a set of candidate waveform features that effectively reflect various grounding fault causes is extracted from the fault waveforms. These features are then subjected to multivariate analysis of variance (MANOVA) to assess their correlation with grounding fault causes, thereby selecting effective features for identifying the root causes. Subsequently, fault cause identification models based on Extreme Learning Machine (ELM) and Support Vector Machine (SVM) are designed respectively. These models' recognition results are fused using Dempster-Shafer (D-S) theory of evidence fusion, establishing a comprehensive identification model for grounding fault causes. Finally, the validity of the established comprehensive identification model is verified based on field data, demonstrating its superiority over any single identification model and confirming its feasibility.

Key words: ground fault cause, single-phase-to-ground fault, extreme learning machine, support vector machine, D-S evidence theory.