中国电力 ›› 2024, Vol. 57 ›› Issue (9): 80-93.DOI: 10.11930/j.issn.1004-9649.202308096
• 海上风电制氢技术经济、规划运行及政策机制 • 上一篇 下一篇
丰力1,2(), 张莲梅1,2(
), 韦家佳1,2, 邓长虹1,2(
), 李果3, 尹家悦3
收稿日期:
2023-08-24
接受日期:
2024-05-29
出版日期:
2024-09-28
发布日期:
2024-09-23
作者简介:
丰力(2000—),男,硕士研究生,从事新能源接入及电网智能控制研究,E-mail:fenganli57@whu.edu.cn基金资助:
Li FENG1,2(), Lianmei ZHANG1,2(
), Jiajia WEI1,2, Changhong DENG1,2(
), Guo LI3, Jiayue YIN3
Received:
2023-08-24
Accepted:
2024-05-29
Online:
2024-09-28
Published:
2024-09-23
Supported by:
摘要:
现阶段对海上风电经济性评估研究较少,而海上风电亟需经济性评估作为其大面积应用的基础。立足海上风电项目的经济性,首先,梳理了海上风电场的组成及发展,分析目前海上风电的3类6种发展模式;接着,将海上风电项目全生命周期分为初始投资、运营维护及退役回收3个阶段,分析各阶段的成本并搭建其数学模型;然后,引入净现值等6个经济指标评价了一个海上风电案例;最后,归纳海上风电当前发展及研究的不足,指明未来的研究方向,为海上风电更经济化的发展提供支撑和参考。
丰力, 张莲梅, 韦家佳, 邓长虹, 李果, 尹家悦. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57(9): 80-93.
Li FENG, Lianmei ZHANG, Jiajia WEI, Changhong DENG, Guo LI, Jiayue YIN. Development & Thinking of Offshore Wind Power Based on Life Cycle Economic Evaluation[J]. Electric Power, 2024, 57(9): 80-93.
项目 | HVAC | HVDC | FFTS | |||
传输距离/km | <70 | >70 | >70 | |||
传输容量/MW | <800 | > | > | |||
技术成熟度 | 高 | 高 | 低 | |||
海上平台 | 无功补偿 | 换流器 | — | |||
投资维护成本 | 低 | 高 | 低 | |||
电缆成本/(万元·km–1) | 887~ | 550[ | 550[ | |||
运行费用[ | 较高 | 较低 | 较低 | |||
典型项目 | 丹麦Horns Rev Ⅱ | 德国Helwin1-2 | — |
表 1 海上风电3种并网输电技术经济对比
Table 1 Comparison of 3 grid-connected transmission technologies and economies for OWP
项目 | HVAC | HVDC | FFTS | |||
传输距离/km | <70 | >70 | >70 | |||
传输容量/MW | <800 | > | > | |||
技术成熟度 | 高 | 高 | 低 | |||
海上平台 | 无功补偿 | 换流器 | — | |||
投资维护成本 | 低 | 高 | 低 | |||
电缆成本/(万元·km–1) | 887~ | 550[ | 550[ | |||
运行费用[ | 较高 | 较低 | 较低 | |||
典型项目 | 丹麦Horns Rev Ⅱ | 德国Helwin1-2 | — |
指标 | 优点 | 不足 | ||
PVC | 兼顾成本、寿命、通货膨胀等因素,适应性强 | 贴现率难以确定;现金流较难预测;跨地区的经济性和技术水平难以比较 | ||
NPV | 直观反映收入成本关系,考虑实际寿命 | 仅体现当前项目成本,项目横向对比困难,无法体现建设规模 | ||
IRR | 考虑时间价值与设计寿命;投资回报效益明显 | 跨地区的经济技术水平难以比较;现金流难以预测;无法体现建设规模与设计寿命 | ||
PBP | 直观看出成本回收速度;考虑实际寿命 | 跨地区的经济技术水平难以比较; 现金流较难预测;无法体现建设规模与设计寿命 | ||
ROI | 投资利益明显,突出资源优化 | 未考虑时间成本;现金流预测困难;整体性不突出 | ||
LCOE | 强适应性;成本综合 | 参数多;计算复杂;不确定因素多 |
表 2 海上风电经济评估的6个指标比较
Table 2 Comparison of 6 indicators for economic evaluation of offshore wind power
指标 | 优点 | 不足 | ||
PVC | 兼顾成本、寿命、通货膨胀等因素,适应性强 | 贴现率难以确定;现金流较难预测;跨地区的经济性和技术水平难以比较 | ||
NPV | 直观反映收入成本关系,考虑实际寿命 | 仅体现当前项目成本,项目横向对比困难,无法体现建设规模 | ||
IRR | 考虑时间价值与设计寿命;投资回报效益明显 | 跨地区的经济技术水平难以比较;现金流难以预测;无法体现建设规模与设计寿命 | ||
PBP | 直观看出成本回收速度;考虑实际寿命 | 跨地区的经济技术水平难以比较; 现金流较难预测;无法体现建设规模与设计寿命 | ||
ROI | 投资利益明显,突出资源优化 | 未考虑时间成本;现金流预测困难;整体性不突出 | ||
LCOE | 强适应性;成本综合 | 参数多;计算复杂;不确定因素多 |
补贴 | 净收益/万元 | LCOE/(元·(kW·h)–1) | IRR/% | PBP/年 | ||||
有 | 591 165 | 0.447 | 8.36 | 11.26 | ||||
无 | 93 834 | 3.29 | 17.79 |
表 3 粤西某海上风电项目的部分经济指标
Table 3 Some economic indicators of western Guangdong OWP projects
补贴 | 净收益/万元 | LCOE/(元·(kW·h)–1) | IRR/% | PBP/年 | ||||
有 | 591 165 | 0.447 | 8.36 | 11.26 | ||||
无 | 93 834 | 3.29 | 17.79 |
1 | GWEC. Global offshore wind report 2022[R]. Brussels: Global Wind Energy Council, 2023. |
2 | MUSIAL W, SPITSEN P, DUFFY P, et al. Offshore wind market report: 2022 edition[R]. Golden, CO: National Renewable Energy Lab(NREL), 2022. |
3 |
赵靓. “十五五” 中国海上风电度电成本展望[J]. 风能, 2023, (2): 34- 37.
DOI |
4 | CHEN L J, ZHANG L G, KUNG C C. An economic analysis on Taiwanese wind power and regional development[J]. Energy Exploration & Exploitation, 2020, 38 (4): 1228- 1247. |
5 | 严新荣, 张宁宁, 马奎超, 等. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45 (1): 1- 12. |
YAN Xinrong, ZHANG Ningning, MA Kuichao, et al. Overview of current situation and trend of offshore wind power development in China[J]. Power Generation Technology, 2024, 45 (1): 1- 12. | |
6 | 祝海滨. 基于全生命周期的风力发电项目财务可行性分析[D]. 上海: 华东理工大学, 2017. |
ZHU Haibin. Financial Feasibility analysis of wind power generation projects based on the whole life cycle[D]. Shanghai: East China University of Science and Technology, 2017. | |
7 | KOST C, MAYER J. Levelized cost of electricity renewable energy technologies[R]. Freiburg: Fraunhofer Institute for Solar Energy System, 2013. |
8 | 宋冬然, 梁梓昂, 夏鄂, 等. 风电全生命周期成本建模与经济分析综述[J]. 热力发电, 2023, 52 (3): 1- 12. |
SONG Dongran, LIANG Ziang, XIA E, et al. Overview of wind power life-cycle cost modeling and economic analysis[J]. Thermal Power Generation, 2023, 52 (3): 1- 12. | |
9 |
刘胜强, 贺升, 周益辉, 等. 风电叶片废弃物回收技术综述[J]. 中国资源综合利用, 2021, 39 (11): 109- 111.
DOI |
LIU Shengqiang, HE Sheng, ZHOU Yihui, et al. Overview of wind turbine blade waste recovery technology[J]. China Resources Comprehensive Utilization, 2021, 39 (11): 109- 111.
DOI |
|
10 | MAIENZA C, AVOSSA A M, PICOZZI V, et al. Feasibility analysis for floating offshore wind energy[J]. The International Journal of Life Cycle Assessment, 2022: 796-812. |
11 |
GARCIA-TERUEL A, RINALDI G, THIES P R, et al. Life cycle assessment of floating offshore wind farms: an evaluation of operation and maintenance[J]. Applied Energy, 2022, 307, 118067.
DOI |
12 |
PAKENHAM B, ERMAKOVA A, MEHMANPARAST A. A review of life extension strategies for offshore wind farms using techno-economic assessments[J]. Energies, 2021, 14 (7): 1936.
DOI |
13 |
MYTILINOU V, KOLIOS A J. Techno-economic optimisation of offshore wind farms based on life cycle cost analysis on the UK[J]. Renewable Energy, 2019, 132, 439- 454.
DOI |
14 |
SHAMSAN A, SALAH A W, LIM S E, et al. Life cycle cost assessment of offshore wind farm: kudat Malaysia case[J]. Sustainability, 2021, 13 (14): 7943.
DOI |
15 | SHAFIEE M, BRENNAN F, ESPINOSA I A. A parametric whole life cost model for offshore wind farms[J]. The International Journal of Life Cycle Assessment, 2016: 961–975. |
16 | 樊启祥, 陈晓路, 王鑫. 海上风电项目全生命周期资产管理[J]. 项目管理评论, 2022, (2): 72- 77. |
17 | 颜向松. 海上风电项目技术经济及融资策略研究[J]. 财经界, 2022, (24): 60- 62. |
18 |
夏云峰. 2023—2032年全球海上风电有望新增装机380GW[J]. 风能, 2023, (10): 42- 45.
DOI |
19 | 张瑞刚, 王冰佳, 王杰彬, 等. 海上风电叶片行业优点及发展阻碍分析[J]. 船舶工程, 2020, 42 (S1): 523- 525. |
ZHANG Ruigang, WANG Bingjia, WANG Jiebin, et al. Advantages and development obstacles of offshore wind turbine blade industry[J]. Ship Engineering, 2020, 42 (S1): 523- 525. | |
20 | 国际风力发电网. 全球最大!明阳智能推出16 MW海上风机[EB/OL]. (2021-08-23) [2023-04-20]. https://wind.in-en.com/html/wind-2406135.shtml. |
21 |
KOH J H, NG E Y K. Downwind offshore wind turbines: opportunities, trends and technical challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 54, 797- 808.
DOI |
22 |
董誉. 风力发电装备的大型化发展及经济性分析[J]. 科技风, 2016, (2): 108.
DOI |
23 | 孙柏阳, 代川. 风电设备行业研究: 风机大型化驱动降本, 风电天花板打开[R]. 广州: 广发证券, 2021. |
24 |
LIU R F, MA X, REN X J, et al. Comparative analysis of bearing current in wind turbine generators[J]. Energies, 2018, 11 (5): 1305.
DOI |
25 |
齐金玲, 李卫星, 朱蒙, 等. 直驱风机低电压穿越行为对并网点电压的影响及优化控制[J]. 电力系统自动化, 2023, 47 (7): 105- 113.
DOI |
QI Jinling, LI Weixing, ZHU Meng, et al. Impact of low voltage ride-through behavior of direct-driven wind turbine on voltage of grid-connected point and optimal control[J]. Automation of Electric Power Systems, 2023, 47 (7): 105- 113.
DOI |
|
26 | JIN J X, YANG R H, ZHANG R T, et al. Combined low voltage ride through and power smoothing control for DFIG/PMSG hybrid wind energy conversion system employing a SMES-based AC-DC unified power quality conditioner[J]. International Journal of Electrical Power & Energy Systems, 2021, 128, 106733. |
27 | 王鑫, 王海云, 王维庆. 大规模海上风电场电力输送方式研究[J]. 电测与仪表, 2020, 57 (22): 55- 62. |
WANG Xin, WANG Haiyun, WANG Weiqing. Research on power transmission mode of large-scale offshore wind farms[J]. Electrical Measurement & Instrumentation, 2020, 57 (22): 55- 62. | |
28 |
LAURIA S, SCHEMBARI M, PALONE F, et al. Very long distance connection of gigawatt-size offshore wind farms: extra high-voltage AC versus high-voltage DC cost comparison[J]. IET Renewable Power Generation, 2016, 10 (5): 713- 720.
DOI |
29 | 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36 (14): 3758- 3771. |
CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36 (14): 3758- 3771. | |
30 | 刘卫东, 李奇南, 王轩, 等. 大规模海上风电柔性直流输电技术应用现状和展望[J]. 中国电力, 2020, 53 (7): 55- 71. |
LIU Weidong, LI Qinan, WANG Xuan, et al. Application status and prospect of VSC-HVDC technology for large-scale offshore wind farms[J]. Electric Power, 2020, 53 (7): 55- 71. | |
31 | 王邦彦, 王秀丽, 王碧阳, 等. 海上风电分频送出系统可靠性评估模型及方法[J]. 电网技术, 2022, 46 (8): 2899- 2909. |
WANG Bangyan, WANG Xiuli, WANG Biyang, et al. Reliability evaluation model and method of offshore wind power fractional frequency delivery system[J]. Power System Technology, 2022, 46 (8): 2899- 2909. | |
32 | 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析[J]. 电力系统自动化, 2019, 43 (5): 167- 174. |
HUANG Minghuang, WANG Xiuli, LIU Shenquan, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43 (5): 167- 174. | |
33 | 葛维春, 张诗钽, 崔岱, 等. 海上风电送出与就地消纳技术差异综述[J]. 电测与仪表, 2022, 59(5): 23–32. |
HUANG Minghuang, WANG Xiuli, LIU Shenquan, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43(5): 167–174. | |
34 |
杨源, 陈永淑, 陈亮. 海上风电配套储能系统方案研究[J]. 中国勘察设计, 2022, (增刊2): 59- 61.
DOI |
35 |
YU H, YANG X, CHEN H, et al. Energy Storage Capacity Planning Method for Improving Offshore Wind Power Consumption[J]. Sustainability, 2022, 14 (21): 14589.
DOI |
36 |
YUDHISTIRA R, KHATIWADA D, SANCHEZ F. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage[J]. Journal of Cleaner Production, 2022, 358, 131999.
DOI |
37 |
高捷, 赵斌, 杨超, 等. 海上储能技术发展动态与前景[J]. 新能源进展, 2020, 8 (2): 136- 142.
DOI |
GAO Jie, ZHAO Bin, YANG Chao, et al. Development and prospect of energy storage at sea[J]. Advances in New and Renewable Energy, 2020, 8 (2): 136- 142.
DOI |
|
38 | 李丽旻. 海上风电配储经济性待考[N]. 中国能源报, 2020-11-09(9). |
39 |
杜欣烨, 王建喜, 孙永辉, 等. 计及海水淡化制氢的微电网混合储能优化规划[J]. 综合智慧能源, 2022, 44 (5): 49- 55.
DOI |
DU Xinye, WANG Jianxi, SUN Yonghui, et al. Optimal planning of hybrid energy storage systems in microgrids considering seawater desalination and hydrogen production[J]. Integrated Intelligent Energy, 2022, 44 (5): 49- 55.
DOI |
|
40 | 唐巍, 郭雨桐, 闫姝, 等. 多场景海上风电场关键设备技术经济性分析[J]. 中国电力, 2021, 54 (7): 178- 184, 216. |
TANG Wei, GUO Yutong, YAN Shu, et al. Tech-no-economic analysis of key equipment for offshore wind farms with multiple scenarios[J]. Electric Power, 2021, 54 (7): 178- 184, 216. | |
41 | SKAARE B, HANSON T D, NIELSEN F G. Importance of control strategies on fatigue life of floating wind turbines[J]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, 2007, 5: 493–500. |
42 | SULLIVAN R O. Offshore wind in Europe - Key trends and statics 2020 [R]. Brussels: Wind Europe, 2021. |
43 | RODDIER D, CERMELLI C, AUBAULT A, et al. Summary and conclusions of the full life-cycle of the wind float FOWT prototype project[C]//Proceedings of ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway. 2017. |
44 | 姚遥. 新能源发电设备行业研究[R]. 上海: 国金证券, 2023. |
45 |
RODDIER D, CERMELLI C, AUBAULT A, et al. WindFloat: a floating foundation for offshore wind turbines[J]. Journal of Renewable and Sustainable Energy, 2010, 2 (3): 33104.
DOI |
46 |
MATHERN A, VON DER HAAR C, MARX S. Concrete support structures for offshore wind turbines: current status, challenges, and future trends[J]. Energies, 2021, 14 (7): 1995.
DOI |
47 |
DRISCOLL F, JONKMAN J, ROBERTSON A, et al. Validation of a FAST model of the statoil- hywind demo floating wind turbine[J]. Energy Procedia, 2016, 94, 3- 19.
DOI |
48 | 李岩, 吴迪, 洪畅, 等. 大型海上风电场风机排布优化策略研究[J]. 太阳能, 2020, (2): 67- 74. |
LI Yan, WU Di, HONG Chang, et al. Optimization of wind turbine layout in large-scale offshore wind farm[J]. Solar Energy, 2020, (2): 67- 74. | |
49 | 黄六一, 王羿宁, 黄桂芳, 等. 海上风电场对鱼类福利的影响研究进展[J]. 水产学报, 2022, 46 (11): 2226- 2240. |
HUANG Liuyi, WANG Yining, HUANG Guifang, et al. Advances in research on the effects of offshore wind farm on fish welfare[J]. Journal of Fisheries of China, 2022, 46 (11): 2226- 2240. | |
50 |
DI TULLIO G R, MARIANI P, BENASSAI G, et al. Sustainable use of marine resources through offshore wind and mussel farm co-location[J]. Ecological Modelling, 2018, 367, 34- 41.
DOI |
51 | 卢凯. 低碳形势下火电企业能源规划研究——以大唐三门峡电厂为例[D]. 北京: 北京信息科技大学, 2015. |
52 |
VAN DEN BURG S W K, RÖCKMANN C, BANACH J L, et al. Governing risks of multi-use: seaweed aquaculture at offshore wind farms[J]. Frontiers in Marine Science, 2020, 7, 60.
DOI |
53 | 黄伟捷, 江岳文. 远海风电输电和制氢经济可行性分析[J]. 中国电力, 2022, 55 (1): 91- 100. |
HUANG Weijie, JIANG Yuewen. Comparison of economic feasibilites between power transmission and hydrogen production from an offshore wind farm[J]. Electric Power, 2022, 55 (1): 91- 100. | |
54 |
张理, 叶斌, 尹晨旭, 等. 风电制氢经济性及发展前景分析[J]. 东北电力技术, 2020, 41 (7): 5- 9, 37.
DOI |
ZHANG Li, YE Bin, YIN Chenxu, et al. Economy and development prospects analysis of wind power hydrogen production[J]. Northeast Electric Power Technology, 2020, 41 (7): 5- 9, 37.
DOI |
|
55 |
DINH V N, LEAHY P, MCKEOGH E, et al. Development of a viability assessment model for hydrogen production from dedicated offshore wind farms[J]. International Journal of Hydrogen Energy, 2021, 46 (48): 24620- 24631.
DOI |
56 |
纪钦洪, 于广欣, 黄海龙, 等. 海上风电制氢技术现状与发展趋势[J]. 中国海上油气, 2023, 35 (1): 179- 186.
DOI |
JI Qinhong, YU Guangxin, HUANG Hailong, et al. Present status and developing trend of offshore wind-to-hydrogen technology[J]. China Offshore Oil and Gas, 2023, 35 (1): 179- 186.
DOI |
|
57 |
RUBERT T, MCMILLAN D, NIEWCZAS P. A decision support tool to assist with lifetime extension of wind turbines[J]. Renewable Energy, 2018, 120, 423- 433.
DOI |
58 |
IOANNOU A, ANGUS A, BRENNAN F. Parametric CAPEX, OPEX, and LCOE expressions for offshore wind farms based on global deployment parameters[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2018, 13 (5): 281- 290.
DOI |
59 |
LAURA C S, VICENTE D C. Life-cycle cost analysis of floating offshore wind farms[J]. Renewable Energy, 2014, 66, 41- 48.
DOI |
60 | 马晋龙, 孙勇, 叶学顺. 欧洲海上风电规划机制和激励策略及其启示[J]. 中国电力, 2022, 55 (4): 1- 11, 92. |
MA Jinlong, SUN Yong, YE Xueshun. Planning mechanism and incentive strategies of European offshore wind power and their enlightenment[J]. Electric Power, 2022, 55 (4): 1- 11, 92. | |
61 |
CHEN J C, WANG F, STELSON K A. A mathematical approach to minimizing the cost of energy for large utility wind turbines[J]. Applied Energy, 2018, 228, 1413- 1422.
DOI |
62 |
ABEYNAYAKE G, LI G, JOSEPH T, et al. Reliability and cost-oriented analysis, comparison and selection of multi-level MVDC converters[J]. IEEE Transactions on Power Delivery, 2021, 36 (6): 3945- 3955.
DOI |
63 |
孙瑞娟, Gayan ABEYNAYAKE, 穆清, 等. 基于通用生成函数的海上风电集电系统可靠性与经济性评估[J]. 电力系统自动化, 2022, 46 (5): 159- 173.
DOI |
SUN Ruijuan, ABEYNAYAKE G, MU Qing, et al. Reliability and economic evaluation of offshore wind power collection system based on universal generating function[J]. Automation of Electric Power Systems, 2022, 46 (5): 159- 173.
DOI |
|
64 |
PERVEEN R, KISHOR N, MOHANTY S R. Off-shore wind farm development: present status and challenges[J]. Renewable and Sustainable Energy Reviews, 2014, 29, 780- 792.
DOI |
65 |
AHN D, SHIN S C, KIM S Y, et al. Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9 (1): 45- 54.
DOI |
66 |
SARKER B R, FAIZ T I. Minimizing transportation and installation costs for turbines in offshore wind farms[J]. Renewable Energy, 2017, 101, 667- 679.
DOI |
67 | 黄丹. 基于过程分析的海上风电承包项目盈利提升路径研究[D]. 天津: 天津大学, 2019. |
HUANG Dan. Profitable path analysis of offshore wind construction projects based on procedure analysis [D]. Tianjin: Tianjin University, 2019. | |
68 | 房方, 梁栋炀, 刘亚娟, 等. 海上风电智能控制与运维关键技术[J]. 发电技术, 2022, 43 (2): 175- 185. |
FANG Fang, LIANG Dongyang, LIU Yajuan, et al. Key technologies for intelligent control and operation and maintenance of offshore wind power[J]. Power Generation Technology, 2022, 43 (2): 175- 185. | |
69 |
COSTA ÁNGEL M, OROSA JOSÉ A, DIEGO V, et al. New tendencies in wind energy operation and maintenance[J]. Applied Sciences, 2021, 11 (4): 1386.
DOI |
70 |
陈皓勇, 谭科, 席松涛, 等. 海上风电的经营期成本计算模型[J]. 电力系统自动化, 2014, 38 (13): 135- 139.
DOI |
CHEN Haoyong, TAN Ke, XI Songtao, et al. A model for calculating operation period cost of offshore wind power[J]. Automation of Electric Power Systems, 2014, 38 (13): 135- 139.
DOI |
|
71 | 陈述, 周露, 李智, 等. 计及气象可达性的海上风电运维效益仿真方法[J]. 太阳能学报, 2023, 44 (3): 104- 110. |
CHEN Shu, ZHOU Lu, LI Zhi, et al. Simulation method of offshore wind power operation and maintenance benefits considering weather accessibility[J]. Acta Energiae Solaris Sinica, 2023, 44 (3): 104- 110. | |
72 |
TUSAR M I H, SARKER B R. Maintenance cost minimization models for offshore wind farms: a systematic and critical review[J]. International Journal of Energy Research, 2022, 46 (4): 3739- 3765.
DOI |
73 | BJERKSETER C Å A. Levelised costs of energy for offshore floating wind turbine concepts[D]. Oslo: Norwegian University of Life Sciences, 2013. |
74 |
IOANNOU A, ANGUS A, BRENNAN F. A lifecycle techno-economic model of offshore wind energy for different entry and exit instances[J]. Applied Energy, 2018, 221, 406- 424.
DOI |
75 |
TOPHAM E, MCMILLAN D, BRADLEY S, et al. Recycling offshore wind farms at decommissioning stage[J]. Energy Policy, 2019, 129, 698- 709.
DOI |
76 |
CHEN S Y, FENG H, ZHENG J, et al. Life cycle assessment and economic analysis of biomass energy technology in China: a brief review[J]. Processes, 2020, 8 (9): 1112.
DOI |
77 |
PIRES A L G, ROTELLA P Jr, MORIOKA S N, et al. Main trends and criteria adopted in economic feasibility studies of offshore wind energy: a systematic literature review[J]. Energies, 2021, 15 (1): 12.
DOI |
78 | 金长营. 海上风电项目全寿命周期的成本构成及其敏感性分析[J]. 太阳能, 2022, (3): 10- 16. |
JIN Changying. Cost composition of whole life cycle and sensitivity analysis of offshore wind power project[J]. Solar Energy, 2022, (3): 10- 16. |
[1] | 姜文瑾, 刘巧妹, 杨晓东, 阙定飞, 沈豫, 黄夏楠, 赖振华. 计及气固两相储氢特性的海上风电-多元储能系统优化配置[J]. 中国电力, 2024, 57(9): 103-112. |
[2] | 黄宁泊, 高建伟, 许传博, 徐选华, 赵舒通, 缑迅杰, 姜晓静. 基于经验挖掘与混合语言的海上风电制氢加氢港口选址研究[J]. 中国电力, 2024, 57(9): 113-123. |
[3] | 叶婧, 蔡俊文, 张磊, 周广浩, 何杰辉, 翟学. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181. |
[4] | 阎洁, 杨佳琳, 王航宇, 卢姣阳, 刘永前, 张磊. 基于风况预测误差自适应的海上风电场尾流偏转控制方法[J]. 中国电力, 2024, 57(3): 190-196. |
[5] | 卢子敬, 李子寿, 郭相国, 杨博. 基于多目标人工蜂鸟算法的电-氢混合储能系统最优配置[J]. 中国电力, 2023, 56(7): 33-42. |
[6] | 叶婧, 周广浩, 张磊, 杨莉, 翟学, 蔡俊文. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56(6): 167-175. |
[7] | 苏开元, 董文凯, 邱银锋, 魏澈, 谢小荣. 分散式风储一体化系统提升海上油田群电网频率稳定性研究[J]. 中国电力, 2023, 56(5): 163-171. |
[8] | 杨舒婷, 陈新, 黄通, 魏麒璇. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56(4): 38-45. |
[9] | 苏向敬, 宇海波, 符杨, 田书欣, 李海瑜, 耿福海. 基于DALSTM和联合分位数损失的海上风电功率概率预测[J]. 中国电力, 2023, 56(11): 10-19. |
[10] | 王朝辉, 黄松阁, 林斌, 陈雨薇, 范淑敏, 施朝晖. 基于海上风电场区66 kV集电系统海缆最大截面经济性分析[J]. 中国电力, 2023, 56(11): 20-28. |
[11] | 廖修谱, 周全, 李磊, 李彬彬, 王志远, 杨明, 徐殿国. 一种适用于远海风电直流汇集送出换流阀的拓扑及其技术经济性分析[J]. 中国电力, 2022, 55(6): 118-127. |
[12] | 王宇航, 王文玲, 周绪红, 王康, 罗崯滔. 海上风电机组格构式浮式基础结构优化及响应分析[J]. 中国电力, 2022, 55(5): 21-31. |
[13] | 孙艳霞, 方是文, 李震. 海上风电经交流电缆汇集送出系统暂态无功电压建模及特性分析[J]. 中国电力, 2022, 55(4): 166-174. |
[14] | 马晋龙, 孙勇, 叶学顺. 欧洲海上风电规划机制和激励策略及其启示[J]. 中国电力, 2022, 55(4): 1-11,92. |
[15] | 易锦桂, 朱自伟, 谢青. 基于改进场景聚类算法的海上风电储能优化配置研究[J]. 中国电力, 2022, 55(12): 2-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||