中国电力 ›› 2023, Vol. 56 ›› Issue (7): 1-11.DOI: 10.11930/j.issn.1004-9649.202209064
吴桐, 惠红勋, 张洪财
收稿日期:
2022-09-26
修回日期:
2023-06-08
发布日期:
2023-07-28
作者简介:
吴桐(1996-),男,硕士研究生,从事电力系统负荷调控技术研究,E-mail:MC14944@um.edu.mo;惠红勋(1992-),男,通信作者,博士,研究助理教授,从事电力系统需求侧资源优化与控制方法研究,E-mail:hongxunhui@um.edu.mo;张洪财(1990-),男,博士,助理教授,从事综合能源系统运行控制、交通电气化研究,E-mail:hczhang@um.edu.mo
基金资助:
WU Tong, HUI Hongxun, ZHANG Hongcai
Received:
2022-09-26
Revised:
2023-06-08
Published:
2023-07-28
Supported by:
摘要: 实现“碳达峰、碳中和”目标的关键在于城市电网的经济和高效运行。然而,波动性新能源的增加以及负荷峰谷差的扩大等因素为城市电网带来了挑战。传统发电机组通过频繁调节出力来维持系统的稳定运行,这种方式能效较低,而且还面临可调节资源不足的问题。作为城市电网总耗电量的重要组成部分,商业建筑空调系统有潜力作为调节资源参与电网调控。同时,借助建筑的热储能特性,可以在满足用户室内温度舒适需求的同时进行调控,其潜力巨大。为了更好地发掘商业建筑空调系统的调控能力,展示了典型商业建筑空调系统的单体模型和聚合模型,并概述了商业建筑空调系统的调控潜力评估方法和控制技术。同时还对比分析了国内外的典型商业建筑空调系统示范工程,并针对当前的发展状况提出了一些建议和展望。
吴桐, 惠红勋, 张洪财. 商业建筑空调系统参与城市电网负荷调控综述[J]. 中国电力, 2023, 56(7): 1-11.
WU Tong, HUI Hongxun, ZHANG Hongcai. Review of Commercial Air Conditioners for Participating in Urban Grid Regulation[J]. Electric Power, 2023, 56(7): 1-11.
[1] 王林钰, 张富强, 龚一莼, 等. 中国跨能源品种可调节资源潜力与开发利用情景[J]. 中国电力, 2023, 56(6): 1–10 WANG Linyu, ZHANG Fuqiang, GONG Yichun, et al. Potential and utilization scenarios for regulation resources across energy varieties in China[J]. Electric Power, 2023, 56(6): 1–10 [2] 王金丽, 李丰胜, 解芳, 等. “双碳”战略背景下新型配电系统技术标准体系[J]. 中国电力, 2023, 56(5): 22–31 WANG Jinli, LI Fengsheng, XIE Fang, et al. Research on technical standard system of new distribution system under double-carbon strategy[J]. Electric Power, 2023, 56(5): 22–31 [3] 宋永华, 林今, 胡泽春, 等. 能源局域网: 物理架构、运行模式与市场机制[J]. 中国电机工程学报, 2016, 36(21): 5776–5787, 6020 SONG Yonghua, LIN Jin, HU Zechun, et al. Energy distribution network: infrastructure, operation mode and market mechanism[J]. Proceedings of the CSEE, 2016, 36(21): 5776–5787, 6020 [4] 王成山, 刘梦璇, 陆宁. 采用居民温控负荷控制的微网联络线功率波动平滑方法[J]. 中国电机工程学报, 2012, 32(25): 36–43, 8 WANG Chengshan, LIU Mengxuan, LU Ning. A tie-line power smoothing method for microgrid using residential thermostatically-controlled loads[J]. Proceedings of the CSEE, 2012, 32(25): 36–43, 8 [5] 代贤忠, 韩新阳, 靳晓凌. 需求响应参与电力平衡的成本效益评估方法[J]. 中国电力, 2022, 55(10): 170–177 DAI Xianzhong, HAN Xinyang, JIN Xiaoling. Cost-benefit assessment method for demand response participating in power balance[J]. Electric Power, 2022, 55(10): 170–177 [6] 丁一, 惠红勋, 林振智, 等. 面向电力需求侧主动响应的商业模式及市场框架设计[J]. 电力系统自动化, 2017, 41(14): 2–9, 189 DING Yi, HUI Hongxun, LIN Zhenzhi, et al. Design of business model and market framework oriented to active demand response of power demand side[J]. Automation of Electric Power Systems, 2017, 41(14): 2–9, 189 [7] 薛禹胜, 罗运虎, 李碧君, 等. 关于可中断负荷参与系统备用的评述[J]. 电力系统自动化, 2007, 31(10): 1–6 XUE Yusheng, LUO Yunhu, LI Bijun, et al. A review of interruptible load participating in system reserve[J]. Automation of Electric Power Systems, 2007, 31(10): 1–6 [8] 丁一, 吴华华, 惠红勋, 等. 适合需求侧主动响应的中国电力市场机制的思考与建议[J]. 南方电网技术, 2016, 10(3): 24–31, 3 DING Yi, WU Huahua, HUI Hongxun, et al. Analysis and related suggestions on power market mechanism of demand side response in China[J]. Southern Power System Technology, 2016, 10(3): 24–31, 3 [9] 陈灏, 田琳, 盛剑胜, 等. 考虑风险规避和需求响应的电力市场可再生能源综合交易决策研究[J]. 电力科学与技术学报, 2023, 38(1): 27–34 CHEN Hao, TIAN Lin, SHENG Jiansheng, et al. Research on comprehensive trading decision of renewable energy in power market considering the risk aversion and demand response[J]. Journal of Electric Power Science and Technology, 2023, 38(1): 27–34 [10] ALBADI M H, EL-SAADANY E F. A summary of demand response in electricity markets[J]. Electric Power Systems Research, 2008, 78(11): 1989–1996. [11] 党东升, 韩松, 周珏, 等. 需求响应参与系统调峰研究综述[J]. 电力需求侧管理, 2017, 19(5): 13–17 DANG Dongsheng, HAN Song, ZHOU Jue, et al. Review of demand response participating in power system peak shifting[J]. Power Demand Side Management, 2017, 19(5): 13–17 [12] 张钦, 王锡凡, 王建学, 等. 电力市场下需求响应研究综述[J]. 电力系统自动化, 2008, 32(3): 97–106 ZHANG Qin, WANG Xifan, WANG Jianxue, et al. Survey of demand response research in deregulated electricity markets[J]. Automation of Electric Power Systems, 2008, 32(3): 97–106 [13] 陈爱博, 王存旭. 需求响应对电力市场的效益影响研究综述[J]. 沈阳工程学院学报(自然科学版), 2019, 15(4): 338–342 CHEN Aibo, WANG Cunxu. Review on the effect of demand response on power market efficiency[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2019, 15(4): 338–342 [14] 谭鸣骢, 王玲玲, 蒋传文, 等. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55(10): 32–44 TAN Mingcong, WANG Lingling, JIANG Chuanwen, et al. Bi-level optimization model of demand response considering regulation potential of load aggregator[J]. Electric Power, 2022, 55(10): 32–44 [15] The Tsinghua University Building Energy Research Center. The future of cooling in China delivering on action plans for sustainable air conditioning[R]. 2019. [16] 杨梓俊, 丁小叶, 陆晓, 等. 面向需求响应的变频空调负荷建模与运行控制[J]. 电力系统保护与控制, 2021, 49(15): 132–140 YANG Zijun, DING Xiaoye, LU Xiao, et al. Inverter air conditioner load modeling and operational control for demand response[J]. Power System Protection and Control, 2021, 49(15): 132–140 [17] HUI H X, DING Y, LIU W D, et al. Operating reserve evaluation of aggregated air conditioners[J]. Applied Energy, 2017, 196: 218–228. [18] ZHANG W, LIAN J M, CHANG C Y, et al. Aggregated modeling and control of air conditioning loads for demand response[C]//2014 IEEE PES General Meeting | Conference & Exposition. National Harbor, MD, USA. IEEE, 2014: 1. [19] LI Y L, DE LA REE J, GONG Y F. The smart thermostat of HVAC systems based on PMV-PPD model for energy efficiency and demand response[C]//2018 2 nd IEEE Conference on Energy Internet and Energy System Integration (EI2). Beijing, China. IEEE, 2018: 1–6. [20] YOON J H, BALDICK R, NOVOSELAC A. Dynamic demand response controller based on real-time retail price for residential buildings[J]. IEEE Transactions on Smart Grid, 2014, 5(1): 121–129. [21] HU M M, XIAO F. Investigation of the demand response potentials of residential air conditioners using grey-box room thermal model[J]. Energy Procedia, 2017, 105: 2759–2765. [22] GARULLI A, PAOLETTI S, VICINO A. Models and techniques for electric load forecasting in the presence of demand response[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1087–1097. [23] 王婷, 刘潇, 武媚, 等. 大规模空调负荷聚合建模及跟踪控制方案研究[J]. 电力需求侧管理, 2020, 22(6): 51–56 WANG Ting, LIU Xiao, WU Mei, et al. Research on load aggregation modeling and tracking control scheme for large scale air conditioning[J]. Power Demand Side Management, 2020, 22(6): 51–56 [24] 漆淘懿, 惠红勋, 徐立中, 等. 基于 GridLAB-D 的微电网广义需求响应建模与控制[J]. 供用电, 2020, 37(7): 3–10 QI Taoyi, HUI Hongxun, XU Lizhong, et al. Modeling and control of generalized demand response in micro-grids based on GridLAB-D[J]. Distribution & Utilization, 2020, 37(7): 3–10 [25] VALERO S, ORTIZ M, SENABRE C, et al. Methods for customer and demand response policies selection in new electricity markets[J]. IET Generation, Transmission & Distribution, 2007, 1(1): 104. [26] BASHASH S, FATHY H K. Modeling and control of aggregate air conditioning loads for robust renewable power management[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1318–1327. [27] TANG R, WANG S W, YAN C C. A direct load control strategy of centralized air-conditioning systems for building fast demand response to urgent requests of smart grids[J]. Automation in Construction, 2018, 87: 74–83. [28] XUE X, WANG S W, SUN Y J, et al. An interactive building power demand management strategy for facilitating smart grid optimization[J]. Applied Energy, 2014, 116: 297–310. [29] XIE D J, HUI H X, DING Y, et al. Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals[J]. Applied Energy, 2018, 216: 338–347. [30] ULMEANU A P, BARBU V S, TANASIEV V, et al. Hidden Markov models revealing the household thermal profiling from smart meter data[J]. Energy and Buildings, 2017, 154: 127–140. [31] ERICKSON V L, CERPA A E. Occupancy based demand response HVAC control strategy[C]//Proceedings of the 2 nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building. Zurich, Switzerland. New York: ACM, 2010: 7–12. [32] DE DEAR R J, BRAGER G S. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55[J]. Energy and Buildings, 2002, 34(6): 549–561. [33] ALBERT A, RAJAGOPAL R. Thermal profiling of residential energy use[J]. IEEE Transactions on Power Systems, 2015, 30(2): 602–611. [34] QI N, CHENG L, XU H L, et al. Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads[J]. Applied Energy, 2020, 279: 115708. [35] OLIVIERI S J, HENZE G P, CORBIN C D, et al. Evaluation of commercial building demand response potential using optimal short-term curtailment of heating, ventilation, and air-conditioning loads[J]. Journal of Building Performance Simulation, 2014, 7(2): 100–118. [36] GILS H C. Assessment of the theoretical demand response potential in Europe[J]. Energy, 2014, 67: 1–18. [37] XIANG R, LUO M, ZHOU S L, et al. Demand response potential assessment for energy-intensive enterprises based on clustering with dimensionality reduction[C]//2022 China International Conference on Electricity Distribution (CICED). Changsha, China. IEEE, 2022: 83–86. [38] LIU J H, YANG M, DENG F Z, et al. Evaluation of adjustable load potential of industrial and commercial users based on power demand response[J]. IOP Conference Series:Earth and Environmental Science, 2021, 769(4): 042058. [39] ALBADI M H, EL-SAADANY E F. Demand response in electricity markets: an overview[C]//2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA. IEEE, 2007: 1–5. [40] 程林, 万宇翔, 张放, 等. 基于负荷聚合商业务的空调服务运作模式及控制策略[J]. 电力系统自动化, 2018, 42(18): 8–16 CHENG Lin, WAN Yuxiang, ZHANG Fang, et al. Operation mode and control strategy for air-conditioning service based on business of load aggregator[J]. Automation of Electric Power Systems, 2018, 42(18): 8–16 [41] 辛洁晴, 吴亮. 商务楼中央空调周期性暂停分档控制策略[J]. 电力系统自动化, 2013, 37(5): 49–54 XIN Jieqing, WU Liang. Hierarchical strategies for duty cycling control of air conditioners in business buildings[J]. Automation of Electric Power Systems, 2013, 37(5): 49–54 [42] HUI H X, DING Y, SONG Y H, et al. Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error[J]. Applied Energy, 2019, 250: 161–174. [43] XIE K, HUI H X, DING Y, et al. Modeling and control of central air conditionings for providing regulation services for power systems[J]. Applied Energy, 2022, 315: 119035. [44] HAO H, CORBIN C D, KALSI K, et al. Transactive control of commercial buildings for demand response[J]. IEEE Transactions on Power Systems, 2016, 32(1): 774–783. [45] 赵力航, 常伟光, 杨敏, 等. 电力市场环境下虚拟电厂两阶段能量经济优化调度[J]. 中国电力, 2022, 55(10): 14–22 ZHAO Lihang, CHANG Weiguang, YANG Min, et al. Two-stage energy economic optimal dispatch of virtual power plant in deregulated electricity market[J]. Electric Power, 2022, 55(10): 14–22 [46] WAI C H, BEAUDIN M, ZAREIPOUR H, et al. Cooling devices in demand response: a comparison of control methods[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 249–260. [47] ABIRI-JAHROMI A, BOUFFARD F. Contingency-type reserve leveraged through aggregated thermostatically-controlled loads-part I: characterization and control[J]. IEEE Transactions on Power Systems, 2016, 31(3): 1972–1980. [48] HALBE S, CHOWDHURY B, ABBAS A. Mitigating rebound effect of demand response using battery energy storage and electric water heaters[C]//2019 IEEE 16 th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT). Charlotte, NC, USA. IEEE, 2019: 95–99. [49] CUI W Q, DING Y, HUI H X, et al. Evaluation and sequential dispatch of operating reserve provided by air conditioners considering lead-lag rebound effect[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6935–6950. [50] ZHOU X M, SANG M S, BAO M L, et al. Exploiting integrated demand response for operating reserve provision considering rebound effects[J]. IEEE Access, 2022, 10: 15151–15162. [51] LI W, XU P, YE Y. Case study of demand response in a large commercial building-a pilot program in Shanghai[C]//9th International Conference on Indoor Air Quality Ventilation & Energy Conservation Buildings. 2018: 1–6. [52] CHEN T, CUI Q S, GAO C W, et al. Optimal demand response strategy of commercial building-based virtual power plant using reinforcement learning[J]. IET Generation, Transmission & Distribution, 2021, 15(16): 2309–2318. [53] SHAN K, WANG S W, YAN C C, et al. Building demand response and control methods for smart grids: a review[J]. Science and Technology for the Built Environment, 2016, 22(6): 692–704. [54] 孔赟, 潘棋, 王蓓蓓, 等. 空调自动需求响应控制策略在美国商业建筑中的应用案例分析[J]. 电力需求侧管理, 2017, 19(1): 60–64 KONG Yun, PAN Qi, WANG Beibei et al. The performance analysis of automated demand response control strategies for air conditionings adopted in American commercial buildings[J]. Power Demand Side Management, 2017, 19(1): 60–64 |
[1] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
[2] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[3] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王文烨, 张帅, 赵凤展. 计及激励型需求响应的低压配电网混合储能优化配置[J]. 中国电力, 2024, 57(6): 90-101. |
[4] | 张彩玲, 王爽, 葛淑娜, 潘登, 张岩, 韩伟, 段文岩. 计及灵活需求响应和碳-绿证交易的综合能源系统优化调度[J]. 中国电力, 2024, 57(5): 14-25. |
[5] | 李方姝, 余昆, 陈星莺, 华昊辰. 碳约束下基于双重博弈的电力零售商售电价格决策优化[J]. 中国电力, 2024, 57(5): 126-136. |
[6] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[7] | 高月芬, 员成博, 孔凡鹏, 王雪松. 需求响应激励下耦合电转气、碳捕集设备的综合能源系统优化[J]. 中国电力, 2024, 57(4): 32-41. |
[8] | 甘润东, 龙玉江, 汤杰, 何熙, 罗鸿轩, 金鑫. 计及负荷时空转移需求响应的数据中心聚合商最优运行策略[J]. 中国电力, 2024, 57(3): 20-26. |
[9] | 梁珩, 黄耕, 侯宾, 杨玺, 罗小虎, 张达. 工业用户连续参与需求响应的用户基线负荷精准计算方法[J]. 中国电力, 2024, 57(3): 34-42. |
[10] | 高志远, 庄卫金, 耿建, 李峰, 薛必克, 杨晓雷, 白柯鞠. 基于经济人假设的负荷侧资源市场化调节作用机理分析[J]. 中国电力, 2024, 57(3): 213-223. |
[11] | 唐志辉, 张欣, 宁艺飞, 黄璜, 余昆, 华昊辰, 曹佳伟, 郑云天. 基于联盟链技术的商业建筑转供电主体需求响应策略[J]. 中国电力, 2024, 57(12): 109-119. |
[12] | 张晓萱, 薛松, 许野, 许轶, 丁泽宇, 孙庆凯. 考虑可调节负荷减碳降碳价值的需求响应运行决策模型[J]. 中国电力, 2024, 57(11): 151-160. |
[13] | 赵先海, 刘晓峰, 季振亚, 李峰, 刘国宝. 考虑居民用户动态行为的负荷聚合商决策分析[J]. 中国电力, 2024, 57(10): 179-189. |
[14] | 苏湘波, 吕睿可, 郭鸿业, 陈启鑫. 基于负荷台阶的工业需求响应用户优选方法[J]. 中国电力, 2024, 57(1): 18-29. |
[15] | 王世杰, 冯天波, 孙宁, 何可, 李嘉文, 杨程, 崔昊杨. 考虑电-气-热耦合和需求响应的虚拟电厂优化调度策略[J]. 中国电力, 2024, 57(1): 101-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||