中国电力 ›› 2024, Vol. 57 ›› Issue (10): 179-189.DOI: 10.11930/j.issn.1004-9649.202404045

• 数字化技术驱动的新型配电网 • 上一篇    下一篇

考虑居民用户动态行为的负荷聚合商决策分析

赵先海(), 刘晓峰(), 季振亚(), 李峰(), 刘国宝()   

  1. 南京师范大学 电气与自动化工程学院,江苏 南京 210023
  • 收稿日期:2024-04-09 出版日期:2024-10-28 发布日期:2024-10-25
  • 作者简介:赵先海(2000—),男,硕士研究生,从事需求侧管理研究,E-mail:1029590268@qq.com
    刘晓峰(1991—),男,通信作者,博士,讲师,从事需求侧管理和智能配用电研究,E-mail:liuxiaofeng@njnu.edu.cn
    季振亚(1988—),女,博士,副教授,从事电动汽车与电网互动和分布式资源聚合管理研究,E-mail:jizhenya@njnu.edu.cn
    李峰(1992—),男,博士,讲师,从事电力系统安全稳定分析与控制研究,E-mail:lifeng_ee@nnu.edu.cn
    刘国宝(1993—),男,博士,副教授,从事电力系统负荷频率控制研究,E-mail:guobaoliu0709@njnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52107100);江苏省高等学校基础科学(自然科学)研究项目(23KJB470020)。

Decision Analysis of Load Aggregator Considering Dynamic Behavior of Residential Users

Xianhai ZHAO(), Xiaofeng LIU(), Zhenya JI(), Feng LI(), Guobao LIU()   

  1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
  • Received:2024-04-09 Online:2024-10-28 Published:2024-10-25
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.52107100) and Basic Science (Natural Science) Research Project of Higher Education Institutions in Jiangsu Universities (No.23KJB470020)

摘要:

负荷聚合商充分发掘负荷的需求响应潜力,对于节能减排具有重要意义。为研究居民行为对聚合商决策的影响,提出考虑居民用户动态行为的负荷聚合商决策分析方法。首先,考虑居民参与需求响应的多重影响因素,基于马尔可夫生成有限理性决策行为模型,从而预测用户参与度;其次,采用信息间隙决策理论来处理用户参与度不确定性问题,将聚合商分成风险投机型和风险规避型;最后,量化评估机会利润和风险损失,具有不同风险偏好的聚合商据此选取适宜的负荷削减策略,以确保期望收益的最大化。算例结果表明:居民用户信息不完整时,该方法能够有效处理居民用户参与需求响应的不确定性问题,负荷聚合商能够更合理地进行决策以保证期望收益。

关键词: 居民需求响应, 马尔可夫, 用户参与度, 信息间隙决策理论, 不确定性

Abstract:

Fully tapping into the demand response potential of load aggregators is of great significance for energy conservation and emission reduction. To study the impact of resident behavior on aggregator decision-making, this paper proposes a load aggregator decision-making analysis method that considers the dynamic behavior of resident users. Firstly, considering the multiple influencing factors of resident participation in demand response, a Markov based bounded rationality decision behavior model is generated to predict user participation level. Secondly, the information gap decision theory is adopted to address the uncertainty of user participation level, and the aggregators are divided into risk investment type and risk avoidance type. Finally, by quantitatively evaluating the opportunity profits and risk losses, the aggregators with different risk preferences can select appropriate load reduction strategies based on this algorithm to ensure the maximization of expected returns. The case study results show that when the information of resident users is incomplete, the proposed method can effectively deal with the uncertainty of resident user participation in demand response, and the load aggregators can more reasonably make decisions to ensure expected returns.

Key words: residential demand response, Markov, user participation level, information gap decision theory, uncertainty