中国电力 ›› 2024, Vol. 57 ›› Issue (11): 151-160.DOI: 10.11930/j.issn.1004-9649.202406091

• 技术经济 • 上一篇    下一篇

考虑可调节负荷减碳降碳价值的需求响应运行决策模型

张晓萱1(), 薛松1, 许野2(), 许轶2, 丁泽宇1, 孙庆凯1   

  1. 1. 国网能源研究院有限公司,北京 102209
    2. 华北电力大学,北京 102206
  • 收稿日期:2024-06-25 出版日期:2024-11-28 发布日期:2024-11-27
  • 作者简介:张晓萱(1980—),女,博士,高级工程师(教授级),从事电力行业的碳减排、碳交易、电力市场和需求响应策略优化设计,E-mail:zhangxiaoxuan@sgeri.sgcc.com.cn
    许野(1980—),男,通信作者,博士,副教授,从事电力系统碳排放流计算、人工智能技术在需求响应策略设计中的应用研究,E-mail:xuye@ncepu.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(1300-202157404A-0-0-00)。

Operational Decision Model for Demand Response Considering Carbon Reduction Value of Adjustable Loads

Xiaoxuan ZHANG1(), Song XUE1, Ye XU2(), Yi XU2, Zeyu DING1, Qingkai SUN1   

  1. 1. State Grid Energy Research Institute Co., Ltd., Beijing 102209, China
    2. North China Electric Power University, Beijing 102206, China
  • Received:2024-06-25 Online:2024-11-28 Published:2024-11-27
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.1300-202157404A-0-0-00).

摘要:

需求响应是重要的可调节负荷资源之一,对于新型电力系统的减碳和新能源消纳具有重要促进作用。将碳流理论、智能优化算法和多属性评判方法融入需求响应可调节负荷运行策略决策过程中,构建以用户用电成本最小化为目标函数、涵盖电力供需平衡和机组出力限制等约束条件的需求响应策略优化模型,利用遗传算法确定利于实现优化目标的优势种群的各个染色体,结合各个染色体的经济效益、新能源消纳量和用户碳排放强度的计算结果,组合运用改进的熵权法和权重加和法对所有染色体进行综合评估和排序,得到确保系统经济效益、新能源消纳和减碳效果全局最佳的需求响应策略,最大限度地提高可调节负荷资源的价值。最后,通过算例验证了方法的可行性和有效性。

关键词: 可调节负荷, 碳流计算, 需求响应, 智能优化, 多重价值

Abstract:

Demand response is one of the important adjustable load resources, which plays an important role in promoting carbon reduction and new energy consumption in new power systems. This article integrated carbon flow theory, intelligent optimization algorithm, and multi-attribute evaluation methods into adjustable load operation strategy decision-making for demand response. It constructed a demand response strategy optimization model with the objective function of minimizing user electricity costs and constraints covering power supply and demand balance and unit output limitations. A genetic algorithm was used to determine the various chromosomes of the advantageous population that are conducive to achieving optimization goals. By combining the economic benefits of each chromosome, the consumption of new energy, and the calculation results of user carbon emission intensity, the improved entropy weight method and weight sum method were combined to comprehensively evaluate and rank all chromosomes. As a result, the demand response strategy that ensures the global best economic benefits, consumption of new energy, and carbon reduction effects of the system was obtained, which maximized the value of adjustable load resources. The feasibility and effectiveness of the method were finally verified through examples.

Key words: adjustable load, carbon flow calculation, demand response, intelligent optimization, multiple values