中国电力 ›› 2024, Vol. 57 ›› Issue (5): 126-136.DOI: 10.11930/j.issn.1004-9649.202309065
• 新型能源体系下电碳协同市场机制及优化运行 • 上一篇 下一篇
收稿日期:
2023-09-14
接受日期:
2023-12-14
出版日期:
2024-05-28
发布日期:
2024-05-16
作者简介:
李方姝(1999—),女,硕士研究生,从事电力市场与经济研究,E-mail:211606010132@hhu.edu.cn基金资助:
Fangshu LI(), Kun YU(
), Xingying CHEN(
), Haochen HUA(
)
Received:
2023-09-14
Accepted:
2023-12-14
Online:
2024-05-28
Published:
2024-05-16
Supported by:
摘要:
在碳约束下,市场中的多零售商竞争售电和多用户购电给电力零售商制定售电价格提高自身利润带来了挑战。为解决零售商售电价格制定的问题,提出了在碳约束条件下多电力零售商竞争售电和多用户购电的双重博弈价格决策优化模型。首先,建立各市场参与者的决策模型。其次,建立并描述电力零售商的双重博弈架构,其中,各电力零售商间构成非合作博弈,各零售商与各用户间构成主从博弈。然后,采用循环迭代嵌套IPOPT求解器的方法求解零售商的双重博弈问题。最后,通过仿真算例对所提模型进行验证分析。仿真结果表明,通过所提模型寻优合理的售电价格可以实现各零售商自身售电利润的最大化,同时用户也能通过博弈模型得到最优的购电策略,以提升用电综合满意度。
李方姝, 余昆, 陈星莺, 华昊辰. 碳约束下基于双重博弈的电力零售商售电价格决策优化[J]. 中国电力, 2024, 57(5): 126-136.
Fangshu LI, Kun YU, Xingying CHEN, Haochen HUA. Price Decision Optimization for Electricity Retailers Based on Dual Game under Carbon Constraints[J]. Electric Power, 2024, 57(5): 126-136.
用户 | ||||
1 | 0.0005 | 0.15 | ||
2 | 0.0015 | 0.16 | ||
3 | 0.0010 | 0.15 | ||
4 | 0.0013 | 0.12 |
表 1 用户的满意度损失参数
Table 1 Loss satisfaction parameters for users
用户 | ||||
1 | 0.0005 | 0.15 | ||
2 | 0.0015 | 0.16 | ||
3 | 0.0010 | 0.15 | ||
4 | 0.0013 | 0.12 |
零售商 | 数值 | |
火电零售商1 | 1400 | |
火电零售商2 | 1350 | |
火电零售商3 | 1240 | |
火电零售商4 | 1110 | |
绿电零售商1 | 1250 | |
绿电零售商2 | 1280 |
表 2 电力零售商的售电量上限
Table 2 The upper limit for retailers to sell electricity
零售商 | 数值 | |
火电零售商1 | 1400 | |
火电零售商2 | 1350 | |
火电零售商3 | 1240 | |
火电零售商4 | 1110 | |
绿电零售商1 | 1250 | |
绿电零售商2 | 1280 |
参数 | 数值 | |
火电零售商购火电的价格 | 37 | |
绿电零售商购绿电的价格 | 45 | |
碳排放权价格 | 40 | |
碳配额比例 | 0.4 | |
电力零售商价格调整步长 | 0.01 |
表 3 仿真参数设置
Table 3 Parameters used for simulation
参数 | 数值 | |
火电零售商购火电的价格 | 37 | |
绿电零售商购绿电的价格 | 45 | |
碳排放权价格 | 40 | |
碳配额比例 | 0.4 | |
电力零售商价格调整步长 | 0.01 |
零售商 | 时段 | 售电价格/(元·(MW·h)–1) | ||||||||
用户1 | 用户2 | 用户3 | 用户4 | |||||||
火电 零售商1 | 谷 | 25.634 | 24.446 | 25.439 | 22.891 | |||||
平 | 55.210 | 59.132 | 56.486 | 55.519 | ||||||
峰 | 114.313 | 110.709 | 109.301 | 117.410 | ||||||
火电 零售商2 | 谷 | 23.916 | 23.736 | 22.573 | 20.027 | |||||
平 | 54.914 | 56.818 | 57.213 | 56.165 | ||||||
峰 | 115.800 | 110.436 | 112.548 | 116.043 | ||||||
火电 零售商3 | 谷 | 24.786 | 25.327 | 22.024 | 23.623 | |||||
平 | 55.148 | 52.726 | 52.759 | 55.312 | ||||||
峰 | 117.235 | 115.564 | 110.964 | 112.495 | ||||||
火电 零售商4 | 谷 | 27.113 | 25.453 | 24.123 | 24.692 | |||||
平 | 50.525 | 54.947 | 52.910 | 55.310 | ||||||
峰 | 118.347 | 116.419 | 118.418 | 118.410 | ||||||
绿电 零售商1 | 谷 | 54.136 | 55.684 | 55.626 | 54.129 | |||||
平 | 101.305 | 100.417 | 96.340 | 99.193 | ||||||
峰 | 148.423 | 153.039 | 150.215 | 149.945 | ||||||
绿电 零售商2 | 谷 | 55.197 | 52.419 | 53.745 | 54.402 | |||||
平 | 97.037 | 96.510 | 100.419 | 101.329 | ||||||
峰 | 148.019 | 150.645 | 153.567 | 151.043 |
表 4 双重博弈后各电力零售商的售电价格
Table 4 Electricity selling price of each electricity retailer after the dual game
零售商 | 时段 | 售电价格/(元·(MW·h)–1) | ||||||||
用户1 | 用户2 | 用户3 | 用户4 | |||||||
火电 零售商1 | 谷 | 25.634 | 24.446 | 25.439 | 22.891 | |||||
平 | 55.210 | 59.132 | 56.486 | 55.519 | ||||||
峰 | 114.313 | 110.709 | 109.301 | 117.410 | ||||||
火电 零售商2 | 谷 | 23.916 | 23.736 | 22.573 | 20.027 | |||||
平 | 54.914 | 56.818 | 57.213 | 56.165 | ||||||
峰 | 115.800 | 110.436 | 112.548 | 116.043 | ||||||
火电 零售商3 | 谷 | 24.786 | 25.327 | 22.024 | 23.623 | |||||
平 | 55.148 | 52.726 | 52.759 | 55.312 | ||||||
峰 | 117.235 | 115.564 | 110.964 | 112.495 | ||||||
火电 零售商4 | 谷 | 27.113 | 25.453 | 24.123 | 24.692 | |||||
平 | 50.525 | 54.947 | 52.910 | 55.310 | ||||||
峰 | 118.347 | 116.419 | 118.418 | 118.410 | ||||||
绿电 零售商1 | 谷 | 54.136 | 55.684 | 55.626 | 54.129 | |||||
平 | 101.305 | 100.417 | 96.340 | 99.193 | ||||||
峰 | 148.423 | 153.039 | 150.215 | 149.945 | ||||||
绿电 零售商2 | 谷 | 55.197 | 52.419 | 53.745 | 54.402 | |||||
平 | 97.037 | 96.510 | 100.419 | 101.329 | ||||||
峰 | 148.019 | 150.645 | 153.567 | 151.043 |
用户 | 需求响应前 | 需求响应后 | ||
1 | 167031 | 162162 | ||
2 | 159953 | 155399 | ||
3 | 163533 | 158881 | ||
4 | 165517 | 160697 |
表 5 需求响应前后各用户的购电成本
Table 5 Electricity purchase costs for each user before and after demand response 单位:元
用户 | 需求响应前 | 需求响应后 | ||
1 | 167031 | 162162 | ||
2 | 159953 | 155399 | ||
3 | 163533 | 158881 | ||
4 | 165517 | 160697 |
零售商 | 时段 | 售电价格/(元·(MW·h)–1) | ||||||
场景1 | 场景2 | 场景3 | ||||||
火电零售商1 | 谷 | 25.439 | 20.406 | 32.873 | ||||
平 | 56.486 | 58.588 | 56.499 | |||||
峰 | 109.301 | 120.357 | 103.749 | |||||
火电零售商2 | 谷 | 22.573 | 22.402 | 31.512 | ||||
平 | 57.213 | 60.845 | 56.895 | |||||
峰 | 112.548 | 118.232 | 106.388 | |||||
火电零售商3 | 谷 | 22.024 | 19.760 | 33.852 | ||||
平 | 52.759 | 58.741 | 57.346 | |||||
峰 | 110.964 | 123.599 | 105.456 | |||||
火电零售商4 | 谷 | 24.123 | 20.756 | 34.086 | ||||
平 | 52.910 | 55.434 | 53.325 | |||||
峰 | 118.418 | 122.344 | 104.182 | |||||
绿电零售商1 | 谷 | 55.626 | 47.264 | 60.324 | ||||
平 | 96.340 | 105.348 | 104.467 | |||||
峰 | 150.215 | 154.344 | 137.205 | |||||
绿电零售商2 | 谷 | 53.745 | 51.343 | 66.135 | ||||
平 | 100.419 | 104.658 | 103.163 | |||||
峰 | 153.567 | 150.533 | 137.098 |
表 6 各场景中各零售商向用户3的售电价格
Table 6 The electricity selling prices of each retailer to user 3 in different scenarios
零售商 | 时段 | 售电价格/(元·(MW·h)–1) | ||||||
场景1 | 场景2 | 场景3 | ||||||
火电零售商1 | 谷 | 25.439 | 20.406 | 32.873 | ||||
平 | 56.486 | 58.588 | 56.499 | |||||
峰 | 109.301 | 120.357 | 103.749 | |||||
火电零售商2 | 谷 | 22.573 | 22.402 | 31.512 | ||||
平 | 57.213 | 60.845 | 56.895 | |||||
峰 | 112.548 | 118.232 | 106.388 | |||||
火电零售商3 | 谷 | 22.024 | 19.760 | 33.852 | ||||
平 | 52.759 | 58.741 | 57.346 | |||||
峰 | 110.964 | 123.599 | 105.456 | |||||
火电零售商4 | 谷 | 24.123 | 20.756 | 34.086 | ||||
平 | 52.910 | 55.434 | 53.325 | |||||
峰 | 118.418 | 122.344 | 104.182 | |||||
绿电零售商1 | 谷 | 55.626 | 47.264 | 60.324 | ||||
平 | 96.340 | 105.348 | 104.467 | |||||
峰 | 150.215 | 154.344 | 137.205 | |||||
绿电零售商2 | 谷 | 53.745 | 51.343 | 66.135 | ||||
平 | 100.419 | 104.658 | 103.163 | |||||
峰 | 153.567 | 150.533 | 137.098 |
图 7 火电零售商1和绿电零售商1对用户3平时段的售电价格变化曲线
Fig.7 The electricity selling price change of thermal electricity retailer 1 and green electricity retailer 1 to user 3 during plain period
1 |
ZENG H B, SHAO B L, DAI H B, et al. Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility[J]. Applied Energy, 2023, 348, 121541.
DOI |
2 | HUA H C, SHI J B, CHEN X Y, et al. Carbon emission flow based energy routing strategy in energy Internet[J]. IEEE Transactions on Industrial Informatics, 2024, 20 (3): 3974- 3985. |
3 |
GU H F, LI Y, YU J, et al. Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives[J]. Applied Energy, 2020, 262, 114276.
DOI |
4 | HUA H C, CHEN X Y, GAN L, et al. A demand side joint electricity and carbon trading mechanism[J]. IEEE Transactions on Industrial Cyber-Physical Systems, 2024, 2, 14- 25. |
5 |
JAVANMARD B, TABRIZIAN M, ANSARIAN M, et al. Energy management of multi-microgrids based on game theory approach in the presence of demand response programs, energy storage systems and renewable energy resources[J]. Journal of Energy Storage, 2021, 42, 102971.
DOI |
6 |
HONG Q Y, MENG F L, LIU J, et al. A bilevel game-theoretic decision-making framework for strategic retailers in both local and wholesale electricity markets[J]. Applied Energy, 2023, 330, 120311.
DOI |
7 |
潘虹锦, 高红均, 杨艳红, 等. 基于主从博弈的售电商多元零售套餐设计与多级市场购电策略[J]. 中国电机工程学报, 2022, 42 (13): 4785- 4800.
DOI |
PAN Hongjin, GAO Hongjun, YANG Yanhong, et al. Multi-type retail packages design and multi-level market power purchase strategy for electricity retailers based on master-slave game[J]. Proceedings of the CSEE, 2022, 42 (13): 4785- 4800.
DOI |
|
8 |
华昊辰, 李宇童, 王同贺, 等. 一种基于混合随机H2/H∞方法的能源互联网边缘计算系统控制策略[J]. 中国电机工程学报, 2020, 40 (21): 6875- 6885.
DOI |
HUA Haochen, LI Yutong, WANG Tonghe, et al. A novel stochastic mixed H2/H∞ control strategy for energy internet edge computing system[J]. Proceedings of the CSEE, 2020, 40 (21): 6875- 6885.
DOI |
|
9 |
张帅, 裴玮, 马腾飞, 等. 考虑马尔可夫决策的产消者P2P电能交易非合作博弈模型[J]. 电力系统自动化, 2023, 47 (13): 18- 27.
DOI |
ZHANG Shuai, PEI Wei, MA Tengfei, et al. Non-cooperative game model of prosumer P2P electricity trading considering Markov decision[J]. Automation of Electric Power Systems, 2023, 47 (13): 18- 27.
DOI |
|
10 | 张旭东, 李飞, 刘迪, 等. 基于CNN的产消群需求响应滚动优化策略[J]. 中国电力, 2021, 54 (2): 78- 89. |
ZHANG Xudong, LI Fei, LIU Di, et al. CNN-based rolling optimization strategy for prosumer group in demand response[J]. Electric Power, 2021, 54 (2): 78- 89. | |
11 |
郭昆健, 高赐威, 林国营, 等. 现货市场环境下售电商激励型需求响应优化策略[J]. 电力系统自动化, 2020, 44 (15): 28- 35.
DOI |
GUO Kunjian, GAO Ciwei, LIN Guoying, et al. Optimization strategy of incentive based demand response for electricity retailer in spot market environment[J]. Automation of Electric Power Systems, 2020, 44 (15): 28- 35.
DOI |
|
12 | 詹祥澎, 杨军, 王昕妍, 等. 考虑实时市场联动的电力零售商鲁棒定价策略[J]. 电网技术, 2022, 46 (6): 2141- 2153. |
ZHAN Xiangpeng, YANG Jun, WANG Xinyan, et al. Robust pricing strategy of power retailer considering linkage of real-time market[J]. Power System Technology, 2022, 46 (6): 2141- 2153. | |
13 |
ZHU C P, FAN R G, LIN J C. The impact of renewable portfolio standard on retail electricity market: a system dynamics model of tripartite evolutionary game[J]. Energy Policy, 2020, 136, 111072.
DOI |
14 |
SUN B, LI M Z, WANG F, et al. An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: a two-level Stackelberg game approach[J]. Energy, 2023, 269, 126861.
DOI |
15 |
DONG J, JIANG Y Z, LIU D R, et al. Promoting dynamic pricing implementation considering policy incentives and electricity retailers' behaviors: an evolutionary game model based on prospect theory[J]. Energy Policy, 2022, 167, 113059.
DOI |
16 | 李雅婷, 唐家俊, 张思, 等. 考虑多重不确定性因素的售电公司购售电决策模型[J]. 电力系统自动化, 2022, 46 (7): 33- 41. |
LI Yating, TANG Jiajun, ZHANG Si, et al. Decision-making model of electricity procurement and sale for electricity retailers considering multiple uncertain factors[J]. Automation of Electric Power Systems, 2022, 46 (7): 33- 41. | |
17 |
林国营, 卢世祥, 郭昆健, 等. 基于主从博弈的电网公司需求响应补贴定价机制[J]. 电力系统自动化, 2020, 44 (10): 59- 67.
DOI |
LIN Guoying, LU Shixiang, GUO Kunjian, et al. Stackelberg game based incentive pricing mechanism of demand response for power grid corporations[J]. Automation of Electric Power Systems, 2020, 44 (10): 59- 67.
DOI |
|
18 |
张婕, 孙伟卿, 刘唯. 考虑需求响应收益的售电商实时电价决策模型[J]. 电网技术, 2022, 46 (2): 492- 504.
DOI |
ZHANG Jie, SUN Weiqing, LIU Wei. Real time pricing considering demand response revenue of electricity sellers[J]. Power System Technology, 2022, 46 (2): 492- 504.
DOI |
|
19 | YAN Q Y, LIN H Y, ZHANG M J, et al. Two-stage flexible power sales optimization for electricity retailers considering demand response strategies of multi-type users[J]. International Journal of Electrical Power & Energy Systems, 2022, 137, 107031. |
20 |
高赐威, 曹家诚, 吕冉, 等. 基于主从博弈的虚拟电厂内部购售电价格制定方法[J]. 电力需求侧管理, 2021, 23 (6): 8- 14.
DOI |
GAO Ciwei, CAO Jiacheng, LYU Ran, et al. Method for determining the internal price of virtual power plant based on stackelberg game theory[J]. Power Demand Side Management, 2021, 23 (6): 8- 14.
DOI |
|
21 |
尹龙, 刘继春, 高红均, 等. 考虑多种用户价格机制下的综合型能源售电公司购电竞价策略[J]. 电网技术, 2018, 42 (1): 88- 97.
DOI |
YIN Long, LIU Jichun, GAO Hongjun, et al. Study on bidding strategy of comprehensive power retailer under multiple user-price mechanisms[J]. Power System Technology, 2018, 42 (1): 88- 97.
DOI |
|
22 |
JU L W, WU J, LIN H Y, et al. Robust purchase and sale transactions optimization strategy for electricity retailers with energy storage system considering two-stage demand response[J]. Applied Energy, 2020, 271, 115155.
DOI |
23 | 戴尚文, 张利, 刘宁宁, 等. 考虑可再生能源消纳责任的售电公司购电决策分析[J]. 中国电力, 2021, 54 (9): 156- 164. |
DAI Shangwen, ZHANG Li, LIU Ningning, et al. Energy purchasing strategy of electricity retailer considering the responsibility of renewable energy consumption[J]. Electric Power, 2021, 54 (9): 156- 164. | |
24 |
LIU D, QIN Z M, HUA H C, et al. , Incremental incentive mechanism design for diversified consumers in demand response[J]. Applied Energy, 2023, 329, 120240.
DOI |
25 |
李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42 (8): 2830- 2842.
DOI |
LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42 (8): 2830- 2842.
DOI |
|
26 |
LI P, WANG H, ZHANG B S. A distributed online pricing strategy for demand response programs[J]. IEEE Transactions on Smart Grid, 2019, 10 (1): 350- 360.
DOI |
27 |
胡鹏, 艾欣, 张朔, 等. 基于需求响应的分时电价主从博弈建模与仿真研究[J]. 电网技术, 2020, 44 (2): 585- 592.
DOI |
HU Peng, AI Xin, ZHANG Shuo, et al. Modelling and simulation study of TOU stackelberg game based on demand response[J]. Power System Technology, 2020, 44 (2): 585- 592.
DOI |
|
28 |
李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41 (4): 1307- 1321, 1538.
DOI |
LI Peng, WU Difan, LI Yuwei, et al. Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and stackelberg game[J]. Proceedings of the CSEE, 2021, 41 (4): 1307- 1321, 1538.
DOI |
|
29 |
李飞, 李咸善, 鲁明芳, 等. 计及配额考核约束的发电商与大用户直购电博弈优化模型[J]. 高电压技术, 2023, 49 (1): 128- 137.
DOI |
LI Fei, LI Xianshan, LU Mingfang, et al. Game optimization model of direct power purchase between power suppliers and large consumers with RPS assessment constrains[J]. High Voltage Engineering, 2023, 49 (1): 128- 137.
DOI |
[1] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
[2] | 王雨晴, 张敏, 王嘉兴, 李泊皓, 杨天阳, 曾鸣. 基于超模博弈的共享储能容量租赁价格决策[J]. 中国电力, 2025, 58(1): 164-173. |
[3] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[4] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王文烨, 张帅, 赵凤展. 计及激励型需求响应的低压配电网混合储能优化配置[J]. 中国电力, 2024, 57(6): 90-101. |
[5] | 张彩玲, 王爽, 葛淑娜, 潘登, 张岩, 韩伟, 段文岩. 计及灵活需求响应和碳-绿证交易的综合能源系统优化调度[J]. 中国电力, 2024, 57(5): 14-25. |
[6] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[7] | 高月芬, 员成博, 孔凡鹏, 王雪松. 需求响应激励下耦合电转气、碳捕集设备的综合能源系统优化[J]. 中国电力, 2024, 57(4): 32-41. |
[8] | 甘润东, 龙玉江, 汤杰, 何熙, 罗鸿轩, 金鑫. 计及负荷时空转移需求响应的数据中心聚合商最优运行策略[J]. 中国电力, 2024, 57(3): 20-26. |
[9] | 梁珩, 黄耕, 侯宾, 杨玺, 罗小虎, 张达. 工业用户连续参与需求响应的用户基线负荷精准计算方法[J]. 中国电力, 2024, 57(3): 34-42. |
[10] | 高志远, 庄卫金, 耿建, 李峰, 薛必克, 杨晓雷, 白柯鞠. 基于经济人假设的负荷侧资源市场化调节作用机理分析[J]. 中国电力, 2024, 57(3): 213-223. |
[11] | 唐志辉, 张欣, 宁艺飞, 黄璜, 余昆, 华昊辰, 曹佳伟, 郑云天. 基于联盟链技术的商业建筑转供电主体需求响应策略[J]. 中国电力, 2024, 57(12): 109-119. |
[12] | 张晓萱, 薛松, 许野, 许轶, 丁泽宇, 孙庆凯. 考虑可调节负荷减碳降碳价值的需求响应运行决策模型[J]. 中国电力, 2024, 57(11): 151-160. |
[13] | 赵先海, 刘晓峰, 季振亚, 李峰, 刘国宝. 考虑居民用户动态行为的负荷聚合商决策分析[J]. 中国电力, 2024, 57(10): 179-189. |
[14] | 苏湘波, 吕睿可, 郭鸿业, 陈启鑫. 基于负荷台阶的工业需求响应用户优选方法[J]. 中国电力, 2024, 57(1): 18-29. |
[15] | 王世杰, 冯天波, 孙宁, 何可, 李嘉文, 杨程, 崔昊杨. 考虑电-气-热耦合和需求响应的虚拟电厂优化调度策略[J]. 中国电力, 2024, 57(1): 101-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||