中国电力 ›› 2024, Vol. 57 ›› Issue (5): 137-148.DOI: 10.11930/j.issn.1004-9649.202312018
• 新型能源体系下电碳协同市场机制及优化运行 • 上一篇 下一篇
谭玲玲1(
), 汤伟1, 楚冬青1, 于子涵2(
), 吉兴全2, 张玉敏2(
)
收稿日期:2023-12-06
录用日期:2024-03-05
发布日期:2024-05-23
出版日期:2024-05-28
作者简介:谭玲玲(1979—),女,高级工程师,从事电力系统低碳优化调度研究,E-mail:tanlingling@sdepci.com基金资助:
Lingling TAN1(
), Wei TANG1, Dongqing CHU1, Zihan YU2(
), Xingquan JI2, Yumin ZHANG2(
)
Received:2023-12-06
Accepted:2024-03-05
Online:2024-05-23
Published:2024-05-28
Supported by:摘要:
针对微电网中缺乏对碳排放流特性的精确刻画,导致运行层面中微电网的低碳运行方式和经济运行方式之间矛盾凸显,低碳和经济难以兼顾的问题,构建了计及绿电制氢和多能耦合的电-氢一体化运行框架,提出了综合考虑碳排放流和低碳需求响应的微电网低碳-经济协同双层优化调度模型。上层优化调度模型中,以风光储氢一体化工业园区为典型微电网场景,以低碳性和经济性协调最优为目标,将源侧碳交易机制融入调度决策目标中,充分挖掘微电网低碳-经济协同运行方式,以此制定微电网最优低碳经济调度策略;下层低碳需求响应模型中,以微电网用户碳减排所节约的碳排放成本为激励信号,通过建立微电网能量流与碳排放流的映射关系,实现碳排放责任的转移和分摊以及对微电网运行中的碳排放特性精细化评估,进而建立由负荷碳排放强度时空差异性引导用户参与碳减排策略的低碳需求响应(demond response,DR)模型,深入挖掘微电网源-荷间的低碳性和经济性间的协同性。以某工业园区微电网为例,验证了所提模型能有效兼顾系统的低碳性和经济性。
谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148.
Lingling TAN, Wei TANG, Dongqing CHU, Zihan YU, Xingquan JI, Yumin ZHANG. Low-Carbon-Economic Collaborative Optimal Dispatching of Microgrid Considering Electricity-Hydrogen Integration[J]. Electric Power, 2024, 57(5): 137-148.
| 参数 | 数值 | 参数 | 数值 | |||
| 0.85 | 0、3000 | |||||
| 0、800 | 0、1200 | |||||
| –600、600 | 0.80 | |||||
| 0.95 | 0、800 | |||||
| –600、600 | 0.02 | |||||
| 0.03 |
表 1 电-氢一体化相关设备参数
Table 1 Parameters of equipment related to electricity-hydrogen integration
| 参数 | 数值 | 参数 | 数值 | |||
| 0.85 | 0、3000 | |||||
| 0、800 | 0、1200 | |||||
| –600、600 | 0.80 | |||||
| 0.95 | 0、800 | |||||
| –600、600 | 0.02 | |||||
| 0.03 |
| 参数 | 数值 | 参数 | 数值 | |||
| 1.117 | 2 | |||||
| 50、600 | 0.9 | |||||
| 0.9 | 50 | |||||
| 700、0 |
表 2 电源和储能设备参数
Table 2 Parameters of power supply and energy storage equipment
| 参数 | 数值 | 参数 | 数值 | |||
| 1.117 | 2 | |||||
| 50、600 | 0.9 | |||||
| 0.9 | 50 | |||||
| 700、0 |
| 项目 | 成本/万元 | |||||
| 场景1 | 场景2 | 场景3 | ||||
| 总成本 | 2.010 | 1.184 | 1.109 | |||
| 运行成本 | 0.419 | 0.251 | 0.243 | |||
| 碳排放成本 | 0.256 | 0.163 | 0.154 | |||
| 购电成本 | 0.162 | 0.120 | 0.079 | |||
| 购气成本 | 0.776 | 0.465 | 0.461 | |||
| 弃风弃光成本 | 0.387 | 0.080 | 0.072 | |||
| 电氢一体化成本 | — | 0.104 | 0.101 | |||
表 3 不同场景的经济成本
Table 3 Economic costs for different scenarios
| 项目 | 成本/万元 | |||||
| 场景1 | 场景2 | 场景3 | ||||
| 总成本 | 2.010 | 1.184 | 1.109 | |||
| 运行成本 | 0.419 | 0.251 | 0.243 | |||
| 碳排放成本 | 0.256 | 0.163 | 0.154 | |||
| 购电成本 | 0.162 | 0.120 | 0.079 | |||
| 购气成本 | 0.776 | 0.465 | 0.461 | |||
| 弃风弃光成本 | 0.387 | 0.080 | 0.072 | |||
| 电氢一体化成本 | — | 0.104 | 0.101 | |||
| 单位弃风成本 | 单位弃光成本 | 制氢量/kg | ||||
| 场景2 | 场景3 | |||||
| 0.2 | 0.2 | 17262.74 | 16594.11 | |||
| 0.3 | 0.3 | 17428.11 | 16777.18 | |||
| 0.4 | 0.4 | 17730.62 | 17096.50 | |||
表 4 不同弃风和弃光成本的制氢量
Table 4 Hydrogen production under different curtailment costs of wind and PV
| 单位弃风成本 | 单位弃光成本 | 制氢量/kg | ||||
| 场景2 | 场景3 | |||||
| 0.2 | 0.2 | 17262.74 | 16594.11 | |||
| 0.3 | 0.3 | 17428.11 | 16777.18 | |||
| 0.4 | 0.4 | 17730.62 | 17096.50 | |||
| 1 |
XU J Z, YI Y Q. Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: a Nash bargaining approach[J]. Energy, 2023, 263, 125712.
DOI |
| 2 |
LI Z M, WU L, XU Y. Risk-averse coordinated operation of a multi-energy microgrid considering voltage/var control and thermal flow: an adaptive stochastic approach[J]. IEEE Transactions on Smart Grid, 2021, 12 (5): 3914- 3927.
DOI |
| 3 | 张玉敏, 孙鹏凯, 吉兴全, 等. 考虑扩展碳排放流的综合能源系统低碳经济调度[J]. 电网技术, 2023, 47 (8): 3174- 3191. |
| ZHANG Yumin, SUN Pengkai, JI Xingquan, et al. Low-carbon economic dispatch of integrated energy system with augmented carbon emission flow[J]. Power System Technology., 2023, 47 (8): 3174- 3191. | |
| 4 | 张玉敏, 孙鹏凯, 孟祥剑, 等. 基于碳势-能源价格双响应的综合能源系统低碳经济调度[J/OL]. 电力系统自动化: 1–20[2023-08-28].https://kns.cnki.net/kcms/detail/32.1180.TP.20230828.0831.002.html. |
| ZHANG Yumin, SUN Pengkai, MENG Xiangjian, et al. Low-carbon economic dispatch of integrated energy system with dual response of carbon potential energy price[J/OL]. Automation of Electric Power Systems: 1–20[2023-08-28].https://kns.cnki.net/kcms/detail/32.1180.TP.20230828.0831.002.html. | |
| 5 | YANG J J, DONG Z Y, WEN F S. A comparative study of marginal loss pricing algorithms in electricity markets[J]. IET Generation, Transmission & Distribution, 2021, 15 (3): 576- 588. |
| 6 | 刘名扬. 考虑阶梯型碳交易的多能微网运行与规划研究[D]. 南昌: 南昌大学, 2022. |
| LIU Mingyang. Operation and planning of multi-energy microgrids considering ladder-type carbon trading mechanism[D]. Nanchang: Nanchang University, 2022. | |
| 7 |
ZHANG Y M, LI J R, JI X Q, et al. Optimal dispatching of electric-heat-hydrogen integrated energy system based on Stackelberg game[J]. Energy Conversion and Economics, 2023, 4 (4): 267- 275.
DOI |
| 8 | 申泽渊, 赵海波, 李伟康, 等. 面向偏远地区低碳发展的风-光-沼-储综合能源微网多目标规划方法[J]. 太阳能学报, 2023, 44 (7): 71- 79. |
| SHEN Zeyuan, ZHAO Haibo, LI Weikang, et al. Multi-objective optimization method for low-carbon development of wind-solar-biogas-storage integrated energy microgrids in remote regions[J]. Acta Energiae Solaris Sinica, 2023, 44 (7): 71- 79. | |
| 9 | LIU Y, JIANG Z P, XING Z X, et al. Economic and low-carbon island operation scheduling strategy for microgrid with renewable energy[J]. Energy Reports, 2022, 8, 196- 204. |
| 10 | 周天睿, 康重庆, 徐乾耀, 等. 电力系统碳排放流的计算方法初探[J]. 电力系统自动化, 2012, 36 (11): 44- 49. |
| ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary investigation on a method for carbon emission flow calculation of power system[J]. Automation of Electric Power Systems, 2012, 36 (11): 44- 49. | |
| 11 | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42 (8): 2830- 2842. |
| LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42 (8): 2830- 2842. | |
| 12 |
WAN T, TAO Y C, QIU J, et al. Internet data centers participating in electricity network transition considering carbon-oriented demand response[J]. Applied Energy, 2023, 329, 120305.
DOI |
| 13 | 严金炜, 谭露, 刘念, 等. 基于碳流追溯的多微电网系统电碳耦合交易方法[J/OL]. 电网技术: 1–15[2023-10-28].https://doi.org/10.13335/j.1000-3673.pst.2023.0591 |
| YAN Jinwei, TAN Lu, LIU Nian, et al. Electricity-carbon coupling trading for multi-microgrids system based on carbon flow tracing[J/OL]. Power System Technology: 1–15[2023-10-28].https://doi.org/10.13335/j.1000-3673.pst.2023.0591. | |
| 14 | XIONG T L, LIN B W, YANG C, et al. A method for low-carbon dispatch of PEDF (photovoltaic, energy storage, direct current and flexibility) microgrid considering indirect carbon emissions[C]//2022 Asian Conference on Frontiers of Power and Energy (ACFPE). Chengdu, China. IEEE, 2022: 578–584. |
| 15 |
LI B, LI J C. Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters[J]. Applied Energy, 2021, 304, 117760.
DOI |
| 16 | 陈胜, 张景淳, 卫志农, 等. 面向能源转型的电-气-氢综合能源系统规划与运行[J]. 电力系统自动化, 2023, 47 (19): 16- 30. |
| CHEN Sheng, ZHANG Jingchun, WEI Zhinong, et al. Energy transition oriented planning and operation of electricity-gas-hydrogen integrated energy system[J]. Automation of Electric Power Systems, 2023, 47 (19): 16- 30. | |
| 17 |
袁铁江, 计力, 田雪沁, 等. 考虑燃料电池汽车加氢负荷的电-氢系统协同优化运行[J]. 电力系统自动化, 2023, 47 (5): 16- 25.
DOI |
|
YUAN Tiejiang, JI Li, TIAN Xueqin, et al. Synergistic optimal operation of electricity-hydrogen systems considering hydrogen refueling loads for fuel cell vehicles[J]. Automation of Electric Power Systems, 2023, 47 (5): 16- 25.
DOI |
|
| 18 | 郜捷, 宋洁, 王剑晓, 等. 支撑中国能源安全的电氢耦合系统形态与关键技术[J]. 电力系统自动化, 2023, 47 (19): 1- 15. |
| GAO Jie, SONG Jie, WANG Jianxiao, et al. Form and key technologies of integrated electricity-hydrogen system supporting energy security in China[J]. Automation of Electric Power Systems, 2023, 47 (19): 1- 15. | |
| 19 |
潘光胜, 顾钟凡, 罗恩博, 等. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 2023, 47 (10): 1- 13.
DOI |
|
PAN Guangsheng, GU Zhongfan, LUO Enbo, et al. Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J]. Automation of Electric Power Systems, 2023, 47 (10): 1- 13.
DOI |
|
| 20 | 左冠林. 考虑低碳制氢的微网优化配置与经济运行研究[D]. 广州: 华南理工大学, 2022. |
| ZUO Guanlin. Research on optimal configuration and economic operation of microgrid considering low-carbon hydrogen production[D]. Guangzhou: South China University of Technology, 2022. | |
| 21 | 袁铁江, 杨洋, 李瑞, 等. 考虑源荷不确定性的氢能微网容量优化配置[J]. 中国电力, 2023, 56 (7): 21- 32. |
| YUAN Tiejiang, YANG Yang, LI Rui, et al. Optimized configuration of hydrogen-energy microgrid capacity considering source charge uncertainties[J]. Electric Power, 2023, 56 (7): 21- 32. | |
| 22 | 吉兴全, 赵国航, 于一潇, 等. 基于4E平衡的碳排放因素分解与峰值预测方法[J]. 高电压技术, 2022, 48 (7): 2483- 2494. |
| JI Xingquan, ZHAO Guohang, YU Yixiao, et al. Carbon emission peak prediction and factor decompose method based on 4E equilibrium[J]. High Voltage Engineering, 2022, 48 (7): 2483- 2494. | |
| 23 |
WANG M Q, YANG M, FANG Z, et al. A practical feeder planning model for urban distribution system[J]. IEEE Transactions on Power Systems, 2023, 38 (2): 1297- 1308.
DOI |
| 24 |
董帅, 王成福, 徐士杰, 等. 计及网络动态特性的电-气-热综合能源系统日前优化调度[J]. 电力系统自动化, 2018, 42 (13): 12- 19.
DOI |
|
DONG Shuai, WANG Chengfu, XU Shijie, et al. Day-ahead optimal scheduling of electricity-gas-heat integrated energy system considering dynamic characteristics of networks[J]. Automation of Electric Power Systems, 2018, 42 (13): 12- 19.
DOI |
|
| 25 |
ZHANG Y D, DENG H, YANG J J, et al. Impacts of renewable portfolio standard on carbon emission peaking and tradable green certificate market: a system dynamics analysis method[J]. Frontiers in Energy Research, 2022, 10, 963177.
DOI |
| [1] | 王世谦, 韩丁, 王楠, 白宏坤, 宋大为, 胡彩红. 基于双层主从博弈的主动配电网协同调度[J]. 中国电力, 2025, 58(9): 105-114. |
| [2] | 张宸宇, 喻建瑜, 史明明, 刘瑞煌. 基于构网型储能的新能源微电网电压动态控制性能分析与优化[J]. 中国电力, 2025, 58(9): 115-123. |
| [3] | 皇甫霄文, 李科, 许长清, 蒋小亮, 于昊正, 王汝靖. 计及多微网灵活性的端对端分散式交易策略[J]. 中国电力, 2025, 58(9): 194-204, 218. |
| [4] | 王辉, 董宇成, 夏玉琦, 周子澜, 李欣. 考虑阶梯碳-绿证互认与重力储能的矿区综合能源系统优化调度[J]. 中国电力, 2025, 58(7): 54-67. |
| [5] | 高芳杰, 孙玉杰, 李忆, 乐鹰, 张继广, 许传博, 刘敦楠. 计及海上风电制氢的海岛多能微网鲁棒优化调度[J]. 中国电力, 2025, 58(7): 68-79. |
| [6] | 张婕, 花宇飞, 王晨. 基于合作博弈的需求侧调节响应能力共享模型[J]. 中国电力, 2025, 58(6): 45-55. |
| [7] | 魏春晖, 单林森, 胡大栋, 高乾恒, 张新松, 薛晓岑. 面向需求响应的园区虚拟电厂优化调度策略[J]. 中国电力, 2025, 58(6): 112-121. |
| [8] | 樊会丛, 段志国, 陈志永, 朱士加, 刘航, 李文霄, 杨阳. 基于多智能体深度策略梯度的离网型微电网双层优化调度[J]. 中国电力, 2025, 58(5): 11-20, 32. |
| [9] | 陈炯, 吴文清, 李豪, 秦子翌, 陈翔, 陈宣元. 独立光储微电网控制策略研究[J]. 中国电力, 2025, 58(5): 74-81, 198. |
| [10] | 王力, 蒋宇翔, 曾祥君, 赵斌, 李均昊. 基于深度强化学习的孤岛微电网二次频率控制[J]. 中国电力, 2025, 58(5): 176-188. |
| [11] | 许世杰, 胡邦杰, 赵亮, 王沛. 基于能碳耦合模型的微能源网源荷协同优化调度研究[J]. 中国电力, 2025, 58(4): 1-12. |
| [12] | 向世林, 向月, 王晏亮, 卢宇. 计及负载响应特性的多数据中心时空协同运行优化策略[J]. 中国电力, 2025, 58(4): 170-181. |
| [13] | 周建华, 梁昌誉, 史林军, 李杨, 易文飞. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 77-87. |
| [14] | 闫志彬, 李立, 阳鹏, 宋蕙慧, 车彬, 靳盘龙. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58(2): 103-110. |
| [15] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编