[1] LIU Y X, ZHENG R J, CHEN S S, et al. The economy of wind-integrated-energy-storage projects in China's upcoming power market: a real options approach[J]. Resources Policy, 2019, 63: 101434. [2] 王成山, 于波, 肖峻, 等. 平滑可再生能源发电系统输出波动的储能系统容量优化方法[J]. 中国电机工程学报, 2012, 32(16): 1-8 WANG Chengshan, YU Bo, XIAO Jun, et al. Sizing of energy storage systems for output smoothing of renewable energy systems[J]. Proceedings of the CSEE, 2012, 32(16): 1-8 [3] 吴国诚. 功率波动下风电并网中的储能技术优化[J]. 中国电力, 2016, 49(9): 148-151 WU Guocheng. Grid optimization of energy storage technology with fluctuating wind power[J]. Electric Power, 2016, 49(9): 148-151 [4] 胡亚伟, 李江, 胡立强, 等. 基于风电出力预测误差补偿度与经济效益的最佳储能容量配置[J]. 中国电力, 2016, 49(5): 141-148 HU Yawei, LI Jiang, HU Liqiang, et al. Optimized energy storage capacity allocation based on prediction error compensation degree and economic benefits of wind power[J]. Electric Power, 2016, 49(5): 141-148 [5] 刘向向, 王奔, 张翔, 等. 基于钒电池储能系统的风电场并网功率平抑控制[J]. 中国电力, 2013, 46(8): 48-53 LIU Xiangxiang, WANG Ben, ZHANG Xiang, et al. Smoothing control of grid-connected wind power by VRB-based energy storage systems[J]. Electric Power, 2013, 46(8): 48-53 [6] 周雪松, 权博, 马幼捷, 等. 超导磁储能装置在风电系统控制中的应用[J]. 中国电力, 2010, 43(6): 5-9 ZHOU Xuesong, QUAN Bo, MA Youjie, et al. Applications of a super-conducting magnetic energy storage system in a wind power system[J]. Electric Power, 2010, 43(6): 5-9 [7] 李红军, 崔双喜, 王维庆, 等. 基于风电功率预测与储能技术的风电消纳预测研究[J]. 可再生能源, 2018, 36(11): 135-142 LI Hongjun, CUI Shuangxi, WANG Weiqing, et al. Wind power prediction and energy storage technology based on wind power prediction and energy storage technology[J]. Renewable Energy Resources, 2018, 36(11): 135-142 [8] LI J H, CHEN B, ZHOU J S, et al. The optimal planning of wind power capacity and energy storage capacity based on the bilinear interpolation theory[M]//Smart Power Distribution Systems: Elsevier, 2019, 411-445. [9] 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97, 16 HAN Xiaojuan, CHENG Cheng, JI Tianming, et al. Capacity optimal modeling of hybrid energy storage systems considering battery life[J]. Proceedings of the CSEE, 2013, 33(34): 91-97, 16 [10] 王德顺, 薛金花, 叶季蕾, 等. 基于粒子群算法的储能电站经济优化调度策略[J]. 可再生能源, 2019, 37(5): 714-719 WANG Deshun, XUE Jinhua, YE Jilei, et al. Economic optimization scheduling strategy for battery energy storage system based on particle swarm optimization[J]. Renewable Energy Resources, 2019, 37(5): 714-719 [11] LIU Y, WU X G, DU J Y, et al. Optimal sizing of a wind-energy storage system considering battery life[J]. Renewable Energy, 2020, 147: 2470-2483. [12] CAO M J, XU Q S, QIN X Y, et al. Battery energy storage sizing based on a model predictive control strategy with operational constraints to smooth the wind power[J]. Electrical Power & Energy Systems, 2020, 115: 105471. [13] KHALID M, AGUILERA R P, SAVKIN A V, et al. On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting[J]. Applied Energy, 2018, 211: 764-773. [14] XIA S W, CHAN K W, LUO X, et al. Optimal sizing of energy storage system and its cost-benefit analysis for power grid planning with intermittent wind generation[J]. Renewable Energy, 2018, 122: 472-486. [15] 张文修, 梁怡. 遗传算法的数学基础[M]. 西安: 西安交通大学出版社, 2000.
|