[1] 康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 北京: 中国电力出版社, 2007. [2] 苏学能, 刘天琪, 曹鸿谦, 等. 基于Hadoop架构的多重分布式BP神经网络的短期负荷预测方法[J]. 中国电机工程学报, 2017, 37(17): 4966–4973 SU Xueneng, LIU Tianqi, CAO Hongqian, et al. A multiple distributed BP neural networks approach for short-term load forecasting based on Hadoop framework[J]. Proceedings of the CSEE, 2017, 37(17): 4966–4973 [3] 张平, 潘学萍, 薛文超. 基于小波分解模糊灰色聚类和BP神经网络的短期负荷预测[J]. 电力自动化设备, 2012, 32(11): 121–125 ZHANG Ping, PAN Xueping, XUE Wenchao. Short-term load forecasting based on wavelet decomposition, fuzzy gray correlation clustering and BP neural network[J]. Electric Power Automation Equipment, 2012, 32(11): 121–125 [4] KOUHI S, KEYNIA F, RAVADANEGH S N. A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection[J]. International Journal of Electrical Power & Energy Systems, 2014, 62: 862–867. [5] AMJADY N, KEYNIA F, ZAREIPOUR H. Short-term load forecast of microgrids by a new bilevel prediction strategy[J]. IEEE Transactions on Smart Grid, 2010, 1(3): 286–294. [6] 吴倩红, 高军, 侯广松, 等. 实现影响因素多源异构融合的短期负荷预测支持向量机算法[J]. 电力系统自动化, 2016, 40(15): 67–72 WU Qianhong, GAO Jun, HOU Guangsong, et al. Short-term load forecasting support vector machine algorithm based on multi-source heterogeneous fusion of load factors[J]. Automation of Electric Power Systems, 2016, 40(15): 67–72 [7] 王保义, 王冬阳, 张少敏. 基于Spark和IPPSO_LSSVM的短期分布式电力负荷预测算法[J]. 电力自动化设备, 2016, 36(1): 117–122 WANG Baoyi, WANG Dongyang, ZHANG Shaomin. Distributed short-term load forecasting algorithm based on Spark and IPPSO_LSSVM[J]. Electric Power Automation Equipment, 2016, 36(1): 117–122 [8] SELAKOV A, ILIC S, VUKMIROVIC S, et al. A comparative analysis of SVM and ANN based hybrid model for short term load forecasting[C]//Transmission and Distribution Conference and Exposition(T&D): IEEE PES, 2012: 1-5. [9] 史佳琪, 谭涛, 郭经, 等. 基于深度结构多任务学习的园区型综合能源系统多元负荷预测[J]. 电网技术, 2018, 42(3): 698–706 SHI Jiaqi, TAN Tao, GUO Jing, et al. Multi-task learning based on deep architecture for various types of load forecasting in regional energy system integration[J]. Power System Technology, 2018, 42(3): 698–706 [10] 孔祥玉, 郑锋, 鄂志君, 等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化, 2018, 42(5): 133–139 KONG Xiangyu, ZHENG Feng, E Zhijun, et al. Short-term load forecasting based on deep belief network[J]. Automation of Electric Power Systems, 2018, 42(5): 133–139 [11] 黎灿兵, 李晓辉, 赵瑞, 等. 电力短期负荷预测相似日选取算法[J]. 电力系统自动化, 2008, 32(9): 69–73 LI Canbing, LI Xiaohui, ZHAO Rui, et al. A novel algorithm of selecting similar days for short-term power load forecasting[J]. Automation of Electric Power Systems, 2008, 32(9): 69–73 [12] 李啸骢, 李春涛, 从兰美, 等. 基于动态权值相似日选取算法的短期负荷预测[J]. 电力系统保护与控制, 2017, 45(6): 1–8 LI Xiaocong, LI Chuntao, CONG Lanmei, et al. Short-term load forecasting based on dynamic weight similar day selection algorithm[J]. Power System Protection and Control, 2017, 45(6): 1–8 [13] 孙谦, 姚建刚, 赵俊, 等. 基于最优交集相似日选取的短期母线负荷综合预测[J]. 中国电机工程学报, 2013, 33(4): 126–134 SUN Qian, YAO Jiangang, ZHAO Jun, et al. Short-term bus load integrated forecasting based on selecting optimal intersection similar days[J]. Proceedings of the CSEE, 2013, 33(4): 126–134 [14] HOVERSTAD B A, TIDEMANN A, LANGSETH H, et al. Short-term load forecasting with seasonal decomposition using evolution for parameter tuning[J]. IEEE Transactions on Smart Grid, 2015, 6(4): 1904–1913. [15] 李滨, 覃芳璐, 李倍存, 等. 基于改进SLIQ算法及多粒度气象信息匹配的短期负荷预测[J]. 电网技术, 2018, 42(1): 291–300 LI Bin, QIN Fanglu, LI Beicun, et al. Short-term load forecasting based on improved SLIQ algorithm and multi-granularity meteorological information matching[J]. Power System Technology, 2018, 42(1): 291–300 [16] 黎灿兵, 杨朋, 刘玮, 等. 短期负荷预测中考虑夏季气温累积效应的方法[J]. 电力系统自动化, 2009, 33(9): 96–99 LI Canbing, YANG Peng, LIU Wei, et al. An analysis of accumulative effect of temperature in short-term load forecasting[J]. Automation of Electric Power Systems, 2009, 33(9): 96–99 [17] 方八零, 李龙, 赵家铸, 等. 动态相似与静态相似相结合的短期负荷预测方法[J]. 电力系统保护与控制, 2018, 46(15): 29–35 FANG Baling, LI Long, ZHAO Jiazhu, et al. Short-term load forecasting based on the combination of dynamic similarity and static similarity[J]. Power System Protection and Control, 2018, 46(15): 29–35 [18] 李滨, 黄佳, 吴茵, 等. 基于气象信息粒还原的台风分时段短期负荷预测[J]. 电工技术学报, 2018, 33(9): 2068–2076 LI Bin, HUANG Jia, WU Yin, et al. Typhoon-period short term load forecasting based on particle reduction of weather information[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2068–2076 [19] 李小燕, 文福拴, 卢恩, 等. 基于相似日负荷修正的台风期间短期负荷预测[J]. 电力系统及其自动化学报, 2013, 25(3): 82–89 LI Xiaoyan, WEN Fushuan, LU En, et al. Short-term load forecasting in typhoon periods based on load modification of similar days[J]. Proceedings of the CSU-EPSA, 2013, 25(3): 82–89 [20] LIU W, DOU Z, WANG W, et al. Short-term load forecasting based on elastic net improved GMDH and difference degree weighting optimization[J]. Applied Sciences, 2018, 8(9), 1603.
|