中国电力 ›› 2025, Vol. 58 ›› Issue (10): 50-62.DOI: 10.11930/j.issn.1004-9649.202503064

• “十五五”电力系统源网荷储协同规划运行关键技术 • 上一篇    下一篇

分布式强化学习驱动的微电网群动态能量优化管理策略

柳华1(), 熊再豹1(), 蒋陶宁1(), 高宇1(), 金雨含2(), 葛磊蛟2()   

  1. 1. 国核电力规划设计研究院有限公司,北京 100095
    2. 天津大学 电气自动化与信息工程学院,天津 300072
  • 收稿日期:2025-03-20 发布日期:2025-10-23 出版日期:2025-10-28
  • 作者简介:
    柳华(1979),女,高级工程师,从事电力系统仪表与控制设计研究,E-mail:liuhua02@spic.com.cn
    熊再豹(1979),男,教授级高工,从事电力系统保护与控制设计研究,E-mail:18910853931@163.com
    蒋陶宁(1986),男,教授级高工,从事电力系统可靠性设计研究,E-mail:jiangtaoning@snpdri.com
    高宇(1992),男,高级工程师,从事电力系统安全稳定及系统保护设计研究,E-mail:gaoyu@snpdri.com
    金雨含(2002),女,通信作者,硕士研究生,从事电力系统规划设计研究,E-mail:jinyuhan5062@163.com
    葛磊蛟(1984),男,副教授,从事智能配电网态势感知技术、新能源并网优化控制技术、人工智能赋能配电网研究,E-mail:legendglj99@tju.edu.cn
  • 基金资助:
    新一代人工智能国家科技重大专项(2022ZD0116900)。

Distributed Reinforcement Learning-Driven Dynamic Energy Optimization Management Strategy for Microgrid Clusters

LIU Hua1(), XIONG Zaibao1(), JIANG Taoning1(), GAO Yu1(), JIN Yuhan2(), GE Leijiao2()   

  1. 1. State Nuclear Electric Power Planning Design and Research Institute Co., Ltd., Beijing 100095, China
    2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • Received:2025-03-20 Online:2025-10-23 Published:2025-10-28
  • Supported by:
    This work is supported by National Science and Technology Major Project (No.2022ZD0116900).

摘要:

随着全球能源需求增长和可持续发展目标推进,微电网能量管理面临高维度、复杂性和动态性挑战。因此,提出一种分布式强化学习驱动的微电网群能量优化管理策略,旨在通过智能化手段提升微电网群在能源调度和管理方面的效率。首先,针对微电网群负荷动态变化大、拓扑结构复杂等难题,构建目标优化函数,并引入一种分布式强化学习算法,实现微电网群在分布式环境下的自适应决策与协同优化。其次,将微电网中的每个电源点视为一个智能体,利用信息共享实现全局效益最大化与发电成本最小化,达到微电网群发电、储能和负荷需求管理的实时优化。最后,通过实际案例进行验证,结果表明所提策略能够维持电力供需之间的动态平衡,与传统方法技术相比,总发电成本节约了18%左右。

关键词: 分布式强化学习, 动态能量管理, 微电网群, 动态平衡, 智能体

Abstract:

With the growth of global energy demand and the advancement of sustainable development goals, energy management of microgrids, as an important means to address energy supply, improve energy efficiency and promote green energy utilization, is faced with high dimensionality, complexity and dynamic challenges. In this paper, we propose a distributed reinforcement learning-driven energy optimization and management strategy for microgrid clusters, aiming to enhance the efficiency and sustainability of microgrid clusters in energy scheduling and management through intelligent means. Aiming at the challenges of the microgrid cluster, such as large dynamic changes in load and complex topology, adaptive decision-making and collaborative optimization of the microgrid cluster in a distributed environment is achieved by constructing an objective optimization function and introducing a distributed reinforcement learning algorithm; and power generation of the microgrid cluster is achieved by treating each power point in the microgrid as an agent and utilizing information sharing to achieve the maximization of the global benefit and minimization of the power generation cost, storage and load demand management; finally, the results of the real case show that the proposed strategy is able to maintain the dynamic balance between power supply and demand, resulting in a saving of about 18% of the total power generation cost compared to the traditional methodology techniques.

Key words: distributed reinforcement learning, dynamic energy management, microgrid clusters, dynamic balancing, agent


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?