[1] 国家能源局. 国家能源局2021年一季度网上新闻发布会文字实录[EB/OL]. (2021-01-30). [2021-03-01]. http://www.nea.gov.cn/2021-01/30/c_139708580.htm. [2] 廖明夫, GASCH R, TWELE J, 等. 风力发电技术[M]. 西安: 西安工业大学出版社, 2009. [3] 刘婧妍. 提升风电消纳能力的热电联合规划方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. LIU Jingyan. Research on method of combined heat and power planning to facilitate the wind power integration[D]. Harbin: Harbin Institute of Technology, 2017. [4] ZHANG Y N, TANG N N, NIU Y G, et al. Wind energy rejection in China: current status, reasons and perspectives[J]. Renewable and Sustainable Energy Reviews, 2016, 66: 322–344. [5] LIU M, WANG S, ZHAO Y L, et al. Heat–power decoupling technologies for coal-fired CHP plants: operation flexibility and thermodynamic performance[J]. Energy, 2019, 188: 116074. [6] 薛朝囡, 杨荣祖, 王汀, 等. 汽轮机高低旁路联合供热在超临界350 MW机组上的应用[J]. 热力发电, 2018, 47(5): 101–105 XUE Zhaonan, YANG Rongzu, WANG Ting, et al. Application of turbine HP-LP bypass system combining with heating in supercritical 350 MW unit[J]. Thermal Power Generation, 2018, 47(5): 101–105 [7] 张虎男, 赵亮, 尹洪超. 350 MW超临界机组高背压供热改造研究及性能分析[J]. 节能, 2018, 37(4): 6–8 ZHANG Hunan, ZHAO Liang, YIN Hongchao. Research and performance analysis on high-back-pressure heating reformation of 350 MW supercritical unit[J]. Energy Conservation, 2018, 37(4): 6–8 [8] 付亚州. 光轴技术在300 MW抽凝式汽轮机组供热改造中的应用探索[J]. 中国设备工程, 2020(7): 121–123 FU Yazhou. The application exploration of optical axis technology in 300 MW condensing steam turbine heat supply reformation[J]. China Plant Engineering, 2020(7): 121–123 [9] 陈建国, 谢争先, 付怀仁, 等. 300 MW机组汽轮机低压缸零出力技术[J]. 热力发电, 2018, 47(5): 106–110 CHEN Jianguo, XIE Zhengxian, FU Huairen, et al. Zero output technology of the low-pressure cylinder of 300 MW unit turbine[J]. Thermal Power Generation, 2018, 47(5): 106–110 [10] 杨志平, 宋四明, 李维, 等. 耦合喷射器热电联产系统设计及运行优化[J]. 中国电机工程学报, 2020, 40(9): 2942-2951. YANG Zhiping, SONG Siming, LI Wei. et al. Design and operation optimization of combined heat and power system coupling with ejector [J] Proceedings of the CSEE, 2020, 40(9): 2942-2951. [11] 陈永辉, 李志强, 蒋志庆, 等. 基于电锅炉的火电机组灵活性改造技术研究[J]. 热能动力工程, 2020, 35(1): 261–266 CHEN Yonghui, LI Zhiqiang, JIANG Zhiqing, et al. Research on flexible transformation technology of thermal power unit based on electric boiler[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(1): 261–266 [12] ZHAO S F, GE Z H, SUN J, et al. Comparative study of flexibility enhancement technologies for the coal-fired combined heat and power plant[J]. Energy Conversion and Management, 2019, 184: 15–23. [13] FAN M, LIANG H B, YOU S J, et al. Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China[J]. Applied Energy, 2018, 221: 100–111. [14] 李峥嵘, 徐尤锦, 黄俊鹏. 季节蓄热太阳能区域供热的规模化优势[J]. 区域供热, 2017, 5: 29–35 LI Zhengrong, XU Youjin, HUANG Junpeng. Large-scale advantages of seasonal heat storage solar district heating[J]. District Heating, 2017, 5: 29–35 [15] 黄素逸, 黄树红. 太阳能热发电原理及技术[M]. 北京: 中国电力出版社, 2012. [16] 王志峰. 太阳能热发电站设计[M]. 2版. 北京: 化学工业出版社, 2019. [17] ZOSCHAK R J, WU S F. Studies of the direct input of solar energy to a fossil-fueled central station steam power plant[J]. Solar Energy, 1975, 17(5): 297–305. [18] PATNODE A. Simulation and performance evaluation of parabolic trough solar power plants[D]. University of Wisconsin-Madison, 2006. [19] DUDLEY V, KOLB G, MAHONEY A, et al. Test results SEGS LS-2 solar collector [R]. Office of Scientific and Technical Information (OSTI), 1994. [20] QUASCHNING V, KISTNER R, ORTMANNS W. Influence of direct normal irradiance variation on the optimal parabolic trough field size: a problem solved with technical and economical simulations[J]. Journal of Solar Energy Engineering, 2002, 124(2): 160–164. [21] LIPPKE F. Simulation of the part-load behavior of a 30 MWe SEGS plant[R]. 1995. [22] STODOLA A. Steam and gas turbines: with a supplement on the prospects of the thermal prime mover[M]. Peter Smith, 1945. [23] HUANG C, HOU H, HU E, et al. Measures to reduce solar energy dumped in a solar aided power generation plant[J]. Applied Energy, 2020, 258: 114106.
|