[1] 余耀. 空冷机组高背压供热与抽汽供热的热经济性比较[J]. 中国电力, 2016, 49(9): 104–108,113 YU Yao. Thermal economics comparison between high back pressure heating and extraction heating for a direct air-cooled power unit[J]. Electric Power, 2016, 49(9): 104–108,113 [2] 王晋权, 蔡新春, 张国胜. 直接空冷热电联产机组供热优化分析[J]. 中国电力, 2015, 48(3): 17–20 WANG Jinquan, CAI Xinchun, ZHANG Guosheng. Optimal analysis on heat supply of combined heat and power direct air-cooling units[J]. Electric Power, 2015, 48(3): 17–20 [3] 杨海生, 古雨, 唐广通, 等. 高背压抽凝机组耦合运行优化技术对深度调峰性能影响及经济性分析[J]. 汽轮机技术, 2020, 62(4): 305–308 YANG Haisheng, GU Yu, TANG Guangtong, et al. Effect of coupling operation optimization technology of high back pressure-condensing cogeneration unit on peak regulation performance and economic analysis[J]. Turbine Technology, 2020, 62(4): 305–308 [4] 梁占伟, 张磊, 徐亚涛, 等. 双机联调抽汽-高背压联合供热?分析与优化[J]. 动力工程学报, 2020, 40(3): 247–255 LIANG Zhanwei, ZHANG Lei, XU Yatao, et al. Exergy analysis and optimization of steam extraction-high back pressure combined heating for dual cogeneration units[J]. Journal of Chinese Society of Power Engineering, 2020, 40(3): 247–255 [5] 李靖, 陈海, 刘健, 等. 基于背压小汽轮机方案的大型燃煤电站供热改造[J]. 热力发电, 2019, 48(2): 132–136 LI Jing, CHEN Hai, LIU Jian, et al. Heating retrofit for large-scale coal-fired power stations based on small back-pressure turbine scheme[J]. Thermal Power Generation, 2019, 48(2): 132–136 [6] 张正陵. 中国“十三五”新能源并网消纳形势、对策研究及多情景运行模拟分析[J]. 中国电力, 2018, 51(1): 2–9 ZHANG Zhengling. Research on situation and countermeasures of new energy integration in the 13 th five-year plan period and its multi-scenario simulation[J]. Electric Power, 2018, 51(1): 2–9 [7] 陈艺华, 张炜, 张成刚, 等. 新型电力系统中促进新能源消纳的电力现货市场交易机制研究[J]. 智慧电力, 2022, 50(2): 97–104 CHEN Yihua, ZHANG Wei, ZHANG Chenggang, et al. Electricity spot market trading mechanism for promoting renewable energy integration in new power system[J]. Smart Power, 2022, 50(2): 97–104 [8] 孟仕雨, 孙伟卿, 韩冬, 等. 支持现货市场的分布式电力交易机制设计与实现[J]. 电力系统保护与控制, 2020, 48(7): 151–158 MENG Shiyu, SUN Weiqing, HAN Dong, et al. Design and implementation of decentralized power transaction mechanism to spot market[J]. Power System Protection and Control, 2020, 48(7): 151–158 [9] 李俊, 王振宇, 向洁. 分布式蓄热电锅炉对弃风电量的消纳能力评估[J]. 电力科学与技术学报, 2021, 36(1): 185–191 LI Jun, WANG Zhenyu, XIANG Jie. Study on ability of distributed electric boilers with thermal storage in abandoned wind power consumption[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 185–191 [10] 宋 杰, 张卫国, 李树鹏, 等. 蓄热式电采暖负荷参与风电消纳运行策略研究[J]. 电力系统保护与控制, 2021, 49(3): 80–87 SONG Jie, ZHANG Weiguo, LI Shupeng, et al. Research on operational strategy for regenerative electric heating load participating in wind power consumption[J]. Power System Protection and Control, 2021, 49(3): 80–87 [11] 曹丽华, 潘同洋, 司和勇, 等. 热电厂配置调峰电锅炉最佳容量确定方法[J]. 中国电力, 2020, 53(6): 140–146 CAO Lihua, PAN Tongyang, SI Heyong, et al. Determination of the optimal capacity of peaking electric boiler in CHP unit[J]. Electric Power, 2020, 53(6): 140–146 [12] 王金星, 郝剑, 刘畅, 等. 抽凝机组热电联产系统中扩大热电负荷比的灵活性研究[J]. 热力发电, 2020, 49(12): 41–50 WANG Jinxing, HAO Jian, LIU Chang, et al. Enlargement of heat-electricity ratio for flexibility operation in a large-scale extraction condensing turbine system[J]. Thermal Power Generation, 2020, 49(12): 41–50 [13] 苏鹏, 王文君, 杨光, 等. 提升火电机组灵活性改造技术方案研究[J]. 中国电力, 2018, 51(5): 87–94 SU Peng, WANG Wenjun, YANG Guang, et al. Research on technology to improve the flexibility of thermal power plants[J]. Electric Power, 2018, 51(5): 87–94 [14] 许朋江, 徐睿, 邓佳, 等. 330 MW机组采暖抽汽对发电热经济性的影响分析[J]. 中国电机工程学报, 2020, 40(19): 6257–6264 XU Pengjiang, XU Rui, DENG Jia, et al. Analysis of the influence of heating steam extraction of 330 MW unit on the economy of electric generation[J]. Proceedings of the CSEE, 2020, 40(19): 6257–6264 [15] 包伟伟, 任伟, 张启林. 大型空冷机组低真空供热特性分析[J]. 区域供热, 2015(4): 73–75 BAO Weiwei, REN Wei, ZHANG Qilin. Analysis of low-vacuum heating characteristics of large air-cooling unit[J]. District Heating, 2015(4): 73–75 [16] 杨志平, 时斌, 李晓恩, 等. 热负荷分配比例对抽凝-背压供热机组能耗影响[J]. 化工进展, 2018, 37(3): 875–883 YANG Zhiping, SHI Bin, LI Xiaoen, et al. Impacts of heat load distribution ratio on energy consumption of extraction steam-high back pressure heating cogeneration unit[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 875–883 [17] 弓学敏, 崔后品, 徐承美, 等. 大型空冷机组高背压供热运行特性分析[J]. 热力发电, 2018, 47(8): 103–109 GONG Xuemin, CUI Houpin, XU Chengmei, et al. Analysis on operation characteristics of high back-pressure heating for large air-cooling units[J]. Thermal Power Generation, 2018, 47(8): 103–109 [18] 梁占伟, 杨承刚, 张磊, 等. 基于单耗理论的抽汽耦合高背压供热优化[J]. 中国电力, 2019, 52(12): 171–178 LIANG Zhanwei, YANG Chenggang, ZHANG Lei, et al. Optimization of steam extraction combined high back pressure heating based on specific consumption theory[J]. Electric Power, 2019, 52(12): 171–178 [19] 黄海煜, 熊华强, 江保锋, 等. 区域电网省间调峰辅助服务交易机制研究[J]. 智慧电力, 2020, 48(2): 119–124 HUANG Haiyu, XIONG Huaqiang, JIANG Baofeng, et al. Design of day-ahead trading mechanism for trans-provincial peak-shaving auxiliary service of regional power grid[J]. Smart Power, 2020, 48(2): 119–124 [20] 火力发电厂技术经济指标计算方法:DL/T 904—2015[S]. [21] 张攀, 杨涛, 杜旭, 等. 直接空冷机组高背压供热技术经济性分析[J]. 汽轮机技术, 2014, 56(3): 209–212 ZHANG Pan, YANG Tao, DU Xu, et al. The economy analysis of the high back pressure heating technology on direct air-cooling unit[J]. Turbine Technology, 2014, 56(3): 209–212 [22] 包伟伟, 孙桂军, 李贺莱, 等. 600 MW超临界空冷机组双背压低真空供热改造[J]. 热力透平, 2017, 46(4): 252–257 BAO Weiwei, SUN Guijun, LI Helai, et al. Retrofitting for low-vacuum heat supply with dual back-pressure in a 600 MW supercritical air-cooling unit[J]. Thermal Turbine, 2017, 46(4): 252–257
|