[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245–6259 LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245–6259 [2] 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55(5): 1–11 ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China’s energy and power system[J]. Electric Power, 2022, 55(5): 1–11 [3] 赵东元, 胡楠, 傅靖, 等. 提升新能源电力系统灵活性的中国实践及发展路径研究[J]. 电力系统保护与控制, 2020, 48(24): 1–8 ZHAO Dongyuan, HU Nan, FU Jing, et al. Research on the practice and road map of enhancing the flexibility of a new generation power system in China[J]. Power System Protection and Control, 2020, 48(24): 1–8 [4] 中国电力企业联合会. 中国电力统计年鉴-2021 [M]. 北京: 中国统计出版社, 2021. [5] 全国煤电机组改造升级实施方案[EB/OL]. (2021-03-15) [2022-06-10].https://www.ndrc.gov.cn/xxgk/zcfb/tz/202111/P020211103333054582799.pdf. [6] 西安热工院. 关于联合发电供热企业召开煤电机组“三改”联动技术研究及成果推广交流会的通知[EB/OL]. (2022-02-21)[2022-06-10].https://mp.weixin.qq.com/s/RXo60 scLq3 QCQjwtC5 SAuA. [7] 电规总院. 组织召开全国煤电“三改联动”典型案例和技术推介会[EB/OL]. (2022-04-26)[2022-06-10]. http://www.eppei.ceec.net.cn/art/2022/4/26/art_50133_2512976.html. [8] 伦涛, 鄂志君, 张利, 等. 燃煤机组不同灵活性调节方案参与一次调频过程的经济性分析[J]. 中国电力, 2019, 52(8): 164–172 LUN Tao, E Zhijun, ZHANG Li, et al. Thermo-economic analysis on four regulation schemes with different flexibilities for primary frequency regulation control in a coal-fired power plant[J]. Electric Power, 2019, 52(8): 164–172 [9] 程杉, 魏昭彬, 黄天力, 等. 基于多能互补的热电联供型微网优化运行[J]. 电力系统保护与控制, 2020, 48(11): 160–168 CHENG Shan, WEI Zhaobin, HUANG Tianli, et al. Multi-energy complementation based optimal operation of a microgrid with combined heat and power[J]. Power System Protection and Control, 2020, 48(11): 160–168 [10] 申融容, 玄婉玥, 张健, 等. 面向电源侧灵活性提升的热电解耦技术综述[J]. 中国能源, 2021, 43(5): 51–59 SHEN Rongrong, XUAN Wanyue, ZHANG Jian, et al. Review of retrofitting methods for decoupling heat and electricity generation to promote the power system flexibility[J]. Energy of China, 2021, 43(5): 51–59 [11] 苏鹏, 王文君, 杨光, 等. 提升火电机组灵活性改造技术方案研究[J]. 中国电力, 2018, 51(5): 87–94 SU Peng, WANG Wenjun, YANG Guang, et al. Research on the technology to improve the flexibility of thermal power plants[J]. Electric Power, 2018, 51(5): 87–94 [12] 居文平, 吕凯, 马汀山, 等. 供热机组热电解耦技术对比[J]. 热力发电, 2018, 47(9): 115–121 JU Wenping, LV Kai, MA Tingshan, et al. Comparison of thermo-electric decoupling techniques for heating units[J]. Thermal Power Generation, 2018, 47(9): 115–121 [13] 鄂志君, 张利, 杨帮宇, 等. 低压缸零出力实现热电联产机组热电解耦与节能的理论研究[J]. 汽轮机技术, 2019, 61(5): 383–386, 391 E Zhijun, ZHANG Li, YANG Bangyu, et al. Theoretical study on heat-electricity decoupling and energy saving of low-pressure cylinder zero output renovation of heat and power cogeneration units[J]. Turbine Technology, 2019, 61(5): 383–386, 391 [14] 韩立, 郭涛. 350 MW供热机组低压缸零出力经济运行研究[J]. 节能技术, 2019, 37(1): 59–61, 83 HAN Li, GUO Tao. Economic operation optimization research on zero output of low pressure cylinder of 350 MW heat supply unit[J]. Energy Conservation Technology, 2019, 37(1): 59–61, 83 [15] 陈建国, 谢争先, 付怀仁, 等. 300 MW机组汽轮机低压缸零出力技术[J]. 热力发电, 2018, 47(5): 106–110 CHEN Jianguo, XIE Zhengxian, FU Huairen, et al. Zero output technology of the low-pressure cylinder of 300 MW unit turbine[J]. Thermal Power Generation, 2018, 47(5): 106–110 [16] 杨海生, 张拓, 唐广通, 等. 低压缸零出力技术对供热机组深度调峰性能影响及调峰补偿标准探讨[J]. 热能动力工程, 2020, 35(6): 268–273 YANG Haisheng, ZHANG Tuo, TANG Guangtong, et al. Influence of zero-output technology of low-pressure cylinder on deep peak regulation performance of heating unit and compensation standard for peak regulation[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(6): 268–273 [17] 刘双白, 张晶, 吴昕, 等. 320 MW机组低压缸零出力性能分析及应用研究[J]. 中国电力, 2021, 54(5): 213–220 LIU Shuangbai, ZHANG Jing, WU Xin, et al. Performance analysis and application research of low-pressure cylinder zero output technology on 320 MW unit[J]. Electric Power, 2021, 54(5): 213–220 [18] 高耀岿, 曾德良, 平博宇, 等. 含两级旁路供热机组安全区计算[J]. 华北电力大学学报(自然科学版), 2020, 47(5): 86–92 GAO Yaokui, ZENG Deliang, PING Boyu, et al. Calculation of safe operation area for CHP units with two-stage bypass[J]. Journal of North China Electric Power University(Natural Science Edition), 2020, 47(5): 86–92 [19] 薛朝囡, 杨荣祖, 王汀, 等. 汽轮机高低旁路联合供热在超临界350 MW机组上的应用[J]. 热力发电, 2018, 47(5): 101–105 XUE Zhaonan, YANG Rongzu, WANG Ting, et al. Application of turbine HP-LP bypass system combining with heating in supercritical 350 MW unit[J]. Thermal Power Generation, 2018, 47(5): 101–105 [20] 王海成. 350 MW超临界机组高低压旁路供热技术分析[J]. 黑龙江电力, 2020, 42(3): 256–259, 263 WANG Haicheng. Analysis of high and low pressure bypass heating technology for 350 MW supercritical unit[J]. Heilongjiang Electric Power, 2020, 42(3): 256–259, 263 [21] 王占洲, 曹丽华, 司和勇. 汽轮机低压缸旁路供热的电出力调节能力分析[J]. 汽轮机技术, 2021, 63(4): 297–299, 302 WANG Zhanzhou, CAO Lihua, SI Heyong. Analysis on power output regulation ability of steam turbine of low pressure cylinder bypass heating[J]. Turbine Technology, 2021, 63(4): 297–299, 302 [22] 陈晓利, 高继录, 郑飞, 等. 多种深度调峰模式对火电机组性能影响分析[J]. 热能动力工程, 2020, 35(12): 26–30 CHEN Xiaoli, GAO Jilu, ZHENG Fei, et al. Comparative analysis of various deep peak regulation modes for thermal power units[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(12): 26–30 |