[1] 董洁, 乔建强. “双碳”目标下先进煤炭清洁利用发电技术研究综述[J]. 中国电力, 2022, 55(8): 202–212 DONG Jie, QIAO Jianqiang. A review on advanced clean coal power generation technology under “carbon peaking and carbon neutrality” goal[J]. Electric Power, 2022, 55(8): 202–212 [2] 李家珏, 李平, 王刚, 等. 计及弃风消纳的热电联产系统的日前调度模型[J]. 太阳能学报, 2021, 42(9): 295–301 LI Jiajue, LI Ping, WANG Gang, et al. Day-to-day scheduling model for cogeneration system accounting for wind power accommodation[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 295–301 [3] WANG C Y, SONG J W, ZHU L K, et al. Peak shaving and heat supply flexibility of thermal power plants[J]. Applied Thermal Engineering, 2021, 193: 117030. [4] MENG Y Q, CAO Y W, LI J Q, et al. The real cost of deep peak shaving for renewable energy accommodation in coal-fired power plants: calculation framework and case study in China[J]. Journal of Cleaner Production, 2022, 367: 132913. [5] 周竞, 耿建, 唐律, 等. 可调节负荷资源参与电力辅助服务市场规则分析与思考[J]. 电力自动化设备, 2022, 42(7): 120–127 ZHOU Jing, GENG Jian, TANG Lü, et al. Rule analysis and cogitation for adjustable load resources participating in ancillary service market[J]. Electric Power Automation Equipment, 2022, 42(7): 120–127 [6] 窦晓铭, 庄贵阳. 碳排放权交易政策评估及机制研究综述[J]. 生态经济, 2022, 38(10): 45–52 DOU Xiaoming, ZHUANG Guiyang. Review of research on policy assessment and mechanism of carbon emission trading scheme[J]. Ecological Economy, 2022, 38(10): 45–52 [7] SALMAN C A, LI H L, LI P, et al. Improve the flexibility provided by combined heat and power plants (CHPs)-a review of potential technologies[J]. Electronics and Energy, 2021, 1: 100023. [8] AHN H, MILLER W, SHEAFFER P, et al. Opportunities for installed combined heat and power (CHP) to increase grid flexibility in the U. S.[J]. Energy Policy, 2021, 157: 112485. [9] 刘学, 胡刚刚, 李健, 等. 高背压双抽热电联产机组联合运行特性及负荷分配[J]. 中国电力, 2022, 55(10): 219–228 LIU Xue, HU Ganggang, LI Jian, et al. Operation characteristics and load distribution of CHP units with extraction condensate and extraction-high back pressure mode[J]. Electric Power, 2022, 55(10): 219–228 [10] 焦庆丰, 雷霖, 李明, 等. 国产600 MW超临界机组宽度调峰试验研究[J]. 中国电力, 2013, 46(10): 1–4, 34 JIAO Qingfeng, LEI Lin, LI Ming, et al. Testing on domestically-made 600 MW supercritical units in broad peak-regulation of power grids[J]. Electric Power, 2013, 46(10): 1–4, 34 [11] 扶静. 面向调峰的热电厂最小运行方式建模及分析[D]. 济南: 山东大学, 2020. FU Jing. Modeling and analysis of minimum operation mode of thermal power plants for peak shaving[D]. Jinan: Shandong University, 2020. [12] WANG C Y, SONG J W, ZHENG W, et al. Analysis of economy, energy efficiency, environment: a case study of the CHP system with both civil and industrial heat users[J]. Case Studies in Thermal Engineering, 2022, 30: 101768. [13] 田亮, 冯荣荣. 多热电联产机组建模及热电动态耦合特性分析[J]. 动力工程学报, 2022, 42(1): 75–82 TIAN Liang, FENG Rongrong. Modeling of multi-cogeneration unit and analysis of thermoelectric dynamic coupling characteristics[J]. Journal of Chinese Society of Power Engineering, 2022, 42(1): 75–82 [14] 朱誉, 李千军, 冯永新, 等. 330 MW 热电联产机组调峰能力及经济性分析[J]. 热力发电, 2014, 43(6): 7–10, 16 ZHU Yu, LI Qianjun, FENG Yongxin, et al. Peaking capability and economic analysis for a 330 MW cogeneration unit[J]. Thermal Power Generation, 2014, 43(6): 7–10, 16 [15] 曹钰, 房磊. “双碳”背景下热电机组-储热联合运行消纳弃风策略[J]. 中国电力, 2022, 55(10): 142–149, 160 CAO Yu, FANG Lei. Combined operation strategy of CHP unit and heat accumulator for eliminate abandoned wind under “double carbon” background[J]. Electric Power, 2022, 55(10): 142–149, 160 [16] 吴涛, 赖菲, 刘震, 等. 热电联产机组在深度调峰模式下的负荷智能分配[J]. 热力发电, 2021, 50(9): 119–127 WU Tao, LAI Fei, LIU Zhen, et al. Intelligent load distribution of cogeneration units in deep peak regulation mode[J]. Thermal Power Generation, 2021, 50(9): 119–127 [17] NAZARI-HERIS M, MOHAMMADI-IVATLOO B, ZARE K, et al. Optimal generation scheduling of large-scale multi-zone combined heat and power systems[J]. Energy, 2020, 210: 118497. [18] 卢志刚, 乞胜静, 蔡瑶, 等. 基于改进MOBCC算法的热电联合系统经济环境调度[J]. 中国电力, 2021, 54(2): 164–174 LU Zhigang, QI Shengjing, CAI Yao, et al. Economic and environmental dispatch of combined heat and power system based on improved MOBCC algorithm[J]. Electric Power, 2021, 54(2): 164–174 [19] 李雪芹, 吴文娴, 张诚敏, 等. 参与风电消纳的自备电厂发电权交易和清洁替代优化模型[J]. 电力科学与技术学报, 2022, 37(4): 57–64 LI Xueqin, WU Wenxian, ZHANG Chengmin, et al. Power generation rights trade and clean replacement optimization model of captive power plant participating in the wind power consumption[J]. Journal of Electric Power Science and Technology, 2022, 37(4): 57–64 [20] 冉华军, 祝杰, 张涛. 基于类电磁机制算法的综合能源系统多目标优化调度[J]. 智慧电力, 2022, 50(3): 22–29 RAN Huajun, ZHU Jie, ZHANG Tao. Multi-objective optimal scheduling of integrated energy system based on electromagnetism-like mechanism algorithm[J]. Smart Power, 2022, 50(3): 22–29 [21] 魏震波, 孙舟倍, 梁政. 基于多目标两阶段规划的虚拟电厂优化调度[J/OL]. 南方电网技术: 1–11. (2023-01-04).https://kns.cnki.net/kcms/detail/44.1643.TK.20230103.1841.002.html. WEI Zhenbo, SUN Zhoubei, LIANG Zheng. Virtual power plant optimal dispatching based on multi-objective and two-stage programming[J/OL]. Southern Power System Technology: 2023: 1–11. (2023-01-04).https://kns.cnki.net/kcms/detail/44.1643.TK.20230103.1841.002.html. [22] 上海环境能源交易所. 全国碳市场每月成交数据20220401-20220429[R/OL]. (2022-04-29)[2022-11-15].https://www.cneeex.com/c/2022-04-29/492309.shtml. [23] 郑莆燕, 柴国旭, 任建兴. 供热改造机组运行性能研究[J]. 华东电力, 2013, 41(6): 1393–1395 ZHENG Puyan, CHAI Guoxu, REN Jianxing. Operating performance of cogeneration retrofits unit[J]. East China Electric Power, 2013, 41(6): 1393–1395 |