[1] GUANDALINI G, CAMPANARI S, ROMANO M C. Power-to-gas plants and gas turbines for improved wind energy dispatchability: energy and economic assessment[J]. Applied Energy, 2015, 147: 117–130. [2] 张运洲, 代红才, 吴潇雨, 等. 中国综合能源服务发展趋势与关键问题[J]. 中国电力, 2021, 54(2): 1–10 ZHANG Yunzhou, DAI Hongcai, WU Xiaoyu, et al. Development trends and key issues of China's integrated energy services[J]. Electric Power, 2021, 54(2): 1–10 [3] 张志义, 余涛, 王德志, 等. 基于集成学习的含电气热商业楼宇群的分时电价求解[J]. 中国电机工程学报, 2019, 39(1): 112–125,326 ZHANG Zhiyi, YU Tao, WANG Dezhi, et al. Optimal solution of time-of-use price based on ensemble learning for electricity-gas-heat commercial building[J]. Proceedings of the CSEE, 2019, 39(1): 112–125,326 [4] 罗纯坚, 李姚旺, 许汉平, 等. 需求响应不确定性对日前优化调度的影响分析[J]. 电力系统自动化, 2017, 41(5): 22–29 LUO Chunjian, LI Yaowang, XU Hanping, et al. Influence of demand response uncertainty on day-ahead optimization dispatching[J]. Automation of Electric Power Systems, 2017, 41(5): 22–29 [5] ZHOU K L, WEI S Y, YANG S L. Time-of-use pricing model based on power supply chain for user-side microgrid[J]. Applied Energy, 2019, 248: 35–43. [6] 孙宇军, 王岩, 王蓓蓓, 等. 考虑需求响应不确定性的多时间尺度源荷互动决策方法[J]. 电力系统自动化, 2018, 42(2): 106–113,159 SUN Yujun, WANG Yan, WANG Beibei, et al. Multi-time scale decision method for source-load interaction considering demand response uncertainty[J]. Automation of Electric Power Systems, 2018, 42(2): 106–113,159 [7] 张晨, 谭忠富, 董安有. 分时电价下大用户直接消纳风电优化模型[J]. 可再生能源, 2015, 33(2): 244–250 ZHANG Chen, TAN Zhongfu, DONG Anyou. Optimization model for large users accommodate wind power on implementing time-of-use tariff[J]. Renewable Energy Resources, 2015, 33(2): 244–250 [8] WU H Y, SHAHIDEHPOUR M, AL-ABDULWAHAB A. Hourly demand response in day-ahead scheduling for managing the variability of renewable energy[J]. IET Generation, Transmission & Distribution, 2013, 7(3): 226–234. [9] 张涛, 郭玥彤, 李逸鸿, 等. 计及电气热综合需求响应的区域综合能源系统优化调度[J]. 电力系统保护与控制, 2021, 49(1): 52–61 ZHANG Tao, GUO Yuetong, LI Yihong, et al. Optimization scheduling of regional integrated energy systems based on electric-thermal-gas integrated demand response[J]. Power System Protection and Control, 2021, 49(1): 52–61 [10] 张娜, 王欢, 宋坤, 等. 基于多能源需求响应的综合能源系统动态优化控制研究[J/OL]. 电测与仪表: 1–14[2021-02-20]. http://kns.cnki.net/kcms/detail/23.1202.TH.20201214.1714.002.html. ZHANG Na, WANG Huan, SONG Kun, et al. Research on dynamic optimization control of integrated energy system based on multi-energy demand response[J/OL]. Electrical Measurement and Instrumentation: 1–14[2021-02-20]. http://kns. cnki. net/kcms/detail/ 23.1202. TH. 20201214.1714. 002. html. [11] 杨世博, 孙亮, 陈立东, 等. 计及分时电价的含冷热电联供型微网的配电网系统协调优化调度[J]. 电力自动化设备, 2021, 41(4): 15–23 YANG Shibo, SUN Liang, CHEN Lidong, et al. Coordinated optimal scheduling of distribution network with CCHP-based microgird considering time-of-use electricity price[J]. Electric Power Automation Equipment, 2021, 41(4): 15–23 [12] 王栋, 郑鹏远, 任祎丹, 等. 不确定性环境下的孤岛型微电网鲁棒优化算法[J]. 现代电力, 2021, 38(2): 147–155 WANG Dong, ZHENG Pengyuan, REN Yidan, et al. Robust optimization algorithm for islanded microgrid in uncertain environment[J]. Modern Electric Power, 2021, 38(2): 147–155 [13] 王冠, 李鹏, 焦扬, 等. 计及风光不确定性的虚拟电厂多目标随机调度优化模型[J]. 中国电力, 2017, 50(5): 107–113 WANG Guan, LI Peng, JIAO Yang, et al. Multi-objective stochastic scheduling optimization model for virtual power plant considering uncertainty of wind and photovoltaic power[J]. Electric Power, 2017, 50(5): 107–113 [14] 徐辉, 焦扬, 蒲雷, 等. 计及不确定性和需求响应的风光燃储集成虚拟电厂随机调度优化模型[J]. 电网技术, 2017, 41(11): 3590–3597 XU Hui, JIAO Yang, PU Lei, et al. Stochastic scheduling optimization model for virtual power plant of integrated wind-photovoltaic-energy storage system considering uncertainty and demand response[J]. Power System Technology, 2017, 41(11): 3590–3597 [15] YANG S B, TAN Z F, LIU Z X, et al. A multi-objective stochastic optimization model for electricity retailers with energy storage system considering uncertainty and demand response[J]. Journal of Cleaner Production, 2020, 277: 124017. [16] 赵楠, 王蓓蓓. 计及多类型需求响应资源的配电网分布式电源优化配置[J]. 中国电力, 2019, 52(11): 51–59,67 ZHAO Nan, WANG Beibei. Optimal allocation of distributed generation in distribution system considering multi-type demand response resources[J]. Electric Power, 2019, 52(11): 51–59,67 [17] 邓婷婷, 娄素华, 田旭, 等. 计及需求响应与火电深度调峰的含风电系统优化调度[J]. 电力系统自动化, 2019, 43(15): 34–41 DENG Tingting, LOU Suhua, TIAN Xu, et al. Optimal dispatch of power system integrated with wind power considering demand response and deep peak regulation of thermal power units[J]. Automation of Electric Power Systems, 2019, 43(15): 34–41 [18] 沈彧, 顾孟迪. 欧洲绿色证书交易机制及对我国的启示[J]. 环境保护, 2007, 35(9): 70–73 [19] 周宏春. 世界碳交易市场的发展与启示[J]. 中国软科学, 2009(12): 39–48 ZHOU Hongchun. Development of carbon market in the world and its implications[J]. China Soft Science, 2009(12): 39–48 [20] REN F K, WEI Z Q, ZHAI X Q. Multi-objective optimization and evaluation of hybrid CCHP systems for different building types[J]. Energy, 2021, 215: 119096. [21] 耿世平, 牛东晓, 郭晓鹏, 等. 计及多能源柔性负荷调度的微能源网多目标演化博弈[J]. 电力建设, 2020, 41(11): 101–115 GENG Shiping, NIU Dongxiao, GUO Xiaopeng, et al. Multi-objective evolutionary game of micro energy grid considering multi-energy flexible load scheduling[J]. Electric Power Construction, 2020, 41(11): 101–115 [22] 孙强, 谢典, 聂青云, 等. 含电-热-冷-气负荷的园区综合能源系统经济优化调度研究[J]. 中国电力, 2020, 53(4): 79–88 SUN Qiang, XIE Dian, NIE Qingyun, et al. Research on economic optimization scheduling of park integrated energy system with electricity-heat-cool-gas load[J]. Electric Power, 2020, 53(4): 79–88 [23] 曾蓉. 冷热电三联产系统及其与地源热泵耦合系统的优化研究[D]. 长沙: 湖南大学, 2016. ZENG Rong. Optimization research of combined cooling, heating and power system and its coupling system with ground source heat pump[D]. Changsha: Hunan University, 2016. [24] 郭梦婕, 严正, 周云, 等. 含风电制氢装置的综合能源系统优化运行[J]. 中国电力, 2020, 53(1): 115–123,161 GUO Mengjie, YAN Zheng, ZHOU Yun, et al. Optimized operation design of integrated energy system with wind power hydrogen production[J]. Electric Power, 2020, 53(1): 115–123,161 [25] 王仕俊, 平常, 薛国斌. 考虑共享储能的社区综合能源系统协同优化研究[J]. 中国电力, 2018, 51(8): 77–84 WANG Shijun, PING Chang, XUE Guobin. Synergic optimization of community energy internet considering the shared energy storage[J]. Electric Power, 2018, 51(8): 77–84
|