[1] 国家发展改革委, 国家能源局. 关于加强和规范电网规划投资管理工作的通知[EB/OL]. (2020-05-28)[2021-08-03]. http://zfxxgk.nea.gov.cn/2020-05/28/c_139148246.htm. [2] 刘洪, 郑楠, 葛少云, 等. 内嵌需求响应与优化运行策略的主动配电系统源网协同规划[J]. 电力系统自动化, 2020, 44(3): 89–97 LIU Hong, ZHENG Nan, GE Shaoyun, et al. Coordinated planning of source and network in active distribution system with demand response and optimized operation strategy[J]. Automation of Electric Power Systems, 2020, 44(3): 89–97 [3] 国家发展改革委, 国家能源局. 关于开展分布式发电市场化交易试点的通知[EB/OL]. (2017-10-31) [2021-08-03]. http://zfxxgk.nea.gov.cn/auto87/201711/t20171113_3055.htm. [4] 张宁, 胡兆光, 周渝慧, 等. 计及随机模糊双重不确定性的源网荷协同规划模型[J]. 电力系统自动化, 2016, 40(1): 39–44, 142 ZHANG Ning, HU Zhaoguang, ZHOU Yuhui, et al. Source-grid-load coordinated planning model considering randomness and fuzziness[J]. Automation of Electric Power Systems, 2016, 40(1): 39–44, 142 [5] 李逐云, 雷霞, 邱少引, 等. 考虑"源-网-荷"三方利益的主动配电网协调规划[J]. 电网技术, 2017, 41(2): 378–387 LI Zhuyun, LEI Xia, QIU Shaoyin, et al. Coordinated planning of active distribution network considering "source-grid-load" benefits[J]. Power System Technology, 2017, 41(2): 378–387 [6] 彭春华, 余愿, 孙惠娟. 基于源网荷协同优化的配电网光储联合系统规划[J]. 电网技术, 2019, 43(11): 3944–3951 PENG Chunhua, YU Yuan, SUN Huijuan. Planning of combined PV-ESS system for distribution network based on source-network-load collaborative optimization[J]. Power System Technology, 2019, 43(11): 3944–3951 [7] 杨楠, 董邦天, 黄禹, 等. 考虑不确定性和多主体博弈的增量配电网源网荷协同规划方法[J]. 中国电机工程学报, 2019, 39(9): 2689–2702 YANG Nan, DONG Bangtian, HUANG Yu, et al. Incremental distribution network source-load collaborative planning method considering uncertainty and multi-agent game[J]. Proceedings of the CSEE, 2019, 39(9): 2689–2702 [8] 刘洪, 范博宇, 唐翀, 等. 基于博弈论的主动配电网扩展规划与光储选址定容交替优化[J]. 电力系统自动化, 2017, 41(23): 38–45, 116 LIU Hong, FAN Boyu, TANG Chong, et al. Game theory based alternate optimization between expansion planning of active distribution system and siting and sizing of photovoltaic and energy storage[J]. Automation of Electric Power Systems, 2017, 41(23): 38–45, 116 [9] ZENG B, SHI J, WEN J Q, et al. A game-theoretic framework for active distribution network planning to benefit different participants under the electricity market[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2017, 25: 83–94. [10] 宁月, 胡志坚, 林伟伟, 等. 基于博弈论的"源-网-荷"多主体利益协调互动的ADN分层规划[J]. 电力科学与技术学报, 2021, 36(1): 63–72 NING Yue, HU Zhijian, LIN Weiwei, et al. ADN hierarchical planning for multi-agent interest coordination interaction of "source-net-load" based on game theory[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 63–72 [11] 黄南天, 包佳瑞琦, 蔡国伟, 等. 多主体联合投资微电网源–储多策略有限理性决策演化博弈容量规划[J]. 中国电机工程学报, 2020, 40(4): 1212–1225, 1412 HUANG Nantian, BAO Jiaruiqi, CAI Guowei, et al. Multi-agent joint investment microgrid source-storage multi-strategy bounded rational decision evolution game capacity planning[J]. Proceedings of the CSEE, 2020, 40(4): 1212–1225, 1412 [12] LIN L, BAO J, ZHENG J, et al. Capacity planning of micro energy grid using double-level game model of environment-economic considering dynamic energy pricing strategy[J]. IEEE Access, 2020, 18: 103924–103940. [13] 林俐, 许冰倩, 王皓怀. 典型分布式发电市场化交易机制分析与建议[J]. 电力系统自动化, 2019, 43(4): 1–8 LIN Li, XU Bingqian, WANG Haohuai. Analysis and recommendations of typical market-based distributed generation trading mechanisms[J]. Automation of Electric Power Systems, 2019, 43(4): 1–8 [14] 曹子健, 林今, 宋永华. 含分布式电源及灵活负荷的配电网电量合约市场[J]. 电网技术, 2019, 43(7): 2430–2440 CAO Zijian, LIN Jin, SONG Yonghua. Electricity contract market for distribution network with distributed generations and flexible loads[J]. Power System Technology, 2019, 43(7): 2430–2440 [15] 张迪, 苗世洪, 周宁, 等. 分布式发电市场化环境下各交易主体响应行为模型[J]. 电工技术学报, 2020, 35(15): 3327–3340 ZAHNG Di, MIAO Shihong, ZHOU Ning, et al. Research on response behavior model of trading entities considering the marketization environment of distributed generation[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3327–3340 [16] 石方迪, 刘敦楠, 余涛, 等. 适应光伏学习曲线的分布式交易过网费机制[J]. 智慧电力, 2020, 48(3): 96–103 SHI Fangdi, LIU Dunnan, YU Tao, et al. Probe into mechanism of use of system charge in distributed trading adapted to photovoltaic learning curve[J]. Smart Power, 2020, 48(3): 96–103 [17] PAUDEL A, SAMPATH LPMI, YANG J, et al. Peer-to-peer energy trading in smart grid considering power losses and network fees[J]. IEEE Transactions On Smart Grid, 2020, 11(6): 4727–4737. [18] 吴治国, 刘继春, 张帅, 等. 多售电主体点对点交易模式及其动态过网费机制[J]. 电力系统自动化, 2021, 45(19): 100–108 WU Zhiguo, LIU Jichun, ZHANG Shuai, et al. Peer-to-peer transaction model of multiple power sellers and its dynamic network fee mechanism[J]. Automation of Electric Power Systems, 2021, 45(19): 100–108 [19] 姚昊天, 向月, 刘俊勇. 基于过网费动态更新的分布式电源多主体协同规划方法[J]. 电力系统自动化, 2021, 45(17): 70–78 YAO Haotian, XIANG Yue, LIU Junyong. Multi-agent collaborative planning method of distributed generation based on dynamic updating of network tariffs[J]. Automation of Electric Power Systems, 2021, 45(17): 70–78 [20] 孙充勃, 李敬如, 罗凤章, 等. 考虑分布式电源接入的配电系统典型算例设计[J]. 电力建设, 2020, 41(10): 47–62 SUN Chongbo, LI Jingru, LUO Fengzhang, et al. Typical case design of distribution system considering DG integration[J]. Electric Power Construction, 2020, 41(10): 47–62 [21] 宋阳, 张静页, 王磊, 等. 计及预测偏差的光伏消纳多时间尺度调度研究[J]. 电力工程技术, 2018, 37(1): 58–64 SONG Yang, ZHANG Jingye, WANG Lei, et al. Research on multi-time scheduling of accommodating photovoltaic considering the error of photovoltaic prediction[J]. Electric Power Engineering Technology, 2018, 37(1): 58–64 [22] 郑旭, 丁坚勇, 尚超, 等. 计及多影响因素的电网停电损失估算方法[J]. 武汉大学学报(工学版), 2016, 49(1): 83–87 ZHENG Xu, DING Jianyong, SHANG Chao, et al. An assessment method of grid outage cost considering multifactorial influences[J]. Engineering Journal of Wuhan University, 2016, 49(1): 83–87 [23] 吴玮坪, 胡泽春, 宋永华. 结合随机规划和序贯蒙特卡洛模拟的风电场储能优化配置方法[J]. 电网技术, 2018, 42(4): 1055–1062 WU Weiping, HU Zechun, SONG Yonghua. Optimal sizing of energy storage system for wind farms combining stochastic programming and sequential Monte Carlo simulation[J]. Power System Technology, 2018, 42(4): 1055–1062 [24] 陈金辉, 陈辰, 董飚. 基于自适应策略的改进粒子群算法[J]. 计算机仿真, 2015, 32(3): 298–303 CHEN Jinhui, CHEN Chen, DONG Biao. An improved particle swarm algorithm based on adaptive strategy[J]. Computer Simulation, 2015, 32(3): 298–303 [25] JEONG Y W, PARK J B, JANG S H, et al. A new quantum-inspired binary PSO for thermal unit commitment problems[C]// 2009 15th International Conference on Intelligent System Applications to Power Systems. Curitiba, Brazil. IEEE, 2009: 1-6. [26] 李天友, 刘智煖, 林焱, 等. 基于多代理的主动配电网规划样本自动模拟研究[J]. 电力系统保护与控制, 2019, 47(18): 152–160 LI Tianyou, LIU Zhixuan, LIN Yan, et al. Automatic simulation study of planning samples of active distribution network based on multi-agent[J]. Power System Protection and Control, 2019, 47(18): 152–160
|