[1] VAPNIK V N. The nature of statistical learning theory [M]. Netherlands: Springer Science & Business Media, 2000. [2] 易智婷,秦博,张平朗. 输电线路大跨越工程造价特点及影响因素分析[J]. 南方电网技术,2008,2(5):76-78. YI Zhiting, QIN Bo, ZHANG Pinglang. Analysis on construction cost characteristics and influence factors for the long span project of transmission lines[J]. Southern Power System Technology, 2008, 2(5): 76-78. [3] 孟凡喜,屈鸿,侯孟书. 基于 GA 和 SVM 的电力负荷预测方法研究[J]. 计算机科学,2014,41(S1):91-93,117. MENG Fanxi, QU Hong, HOU Mengshu. Method of short-term load forecasting based on GA and SVM [J]. Computer Science, 2014, 41(S1): 91-93, 117. [4] 潘磊,李丽娟,丁婷婷,等. 基于改进PSO算法和LS-SVM的短期电力负荷预测[J]. 工矿自动化,2012,38(9):55-59. PAN Lei, LI Lijuan, DING Tingting, et al . Forecasting of short- term power load based on improved PSO algorithm and LS-SVM [J]. Industry and Mine Automation, 2012, 38(9): 55-59. [5] 陈超,黄国勇,邵宗凯,等. 基于日特征量相似日的 PSO-SVM 短期负荷预测[J]. 中国电力,2013,46(7):91-94. CHEN Chao, HUANG Guoyong, SHAO Zongkai, et al . Short-term load forecasting for similar days based on PSO-SVM and daily feature vector [J]. Electric Power, 2013, 46(7): 91-94. [6] 李娟. 基于最大最小萤火虫算法优化BP神经网络的物流需求预测算法研究[J]. 经营管理者,2015(23):4-5. LI Juan. Logistics demand forecasting based on maximum- minimum firefly algorithm and BP[J]. Manager’s Journal, 2015, (23): 4-5. [7] 杨单,李超锋,杨健. 基于改进混沌萤火虫算法的云计算资源调度[J]. 计算机工程,2015,41(2):17-20,25. YANG Dan, LI Chaofeng, YANG Jian. Cloud computing resource scheduling based on improved chaotic firefly algorithm [J]. Computer engineering, 2015, 41(2): 17-20, 25. [8] 李明富,张玉彦,马建华,等. 基于变参数萤火虫算法和Maklink图的路径规划研究[J]. 机械科学与技术,2015,34(11):1728-1732. LI Mingfu, ZHANG Yuyan, MA Jianhua, et al . Research on path planning based on variable parameters firefly algorithm and Maklink gragh[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(11): 1728-1732. [9] 朱德刚,孙辉,赵嘉,等. 基于高斯扰动的粒子群优化算法[J]. 计算机应用,2014,34(3):754-759. ZHU Degang, SUN Hui, ZHAO Jia, et al . Particle swarm optimization algorithm based on Gaussian disturbance [J]. Journal of Computer Application, 2014, 34(3): 754-759. [10] YANG X S. Firefly algorithms for multimodal optimization [M]. Sapporo: Springer, 2009: 169-178. [11] ROBERTS I, KAHN J M, BOERTJES D. Convex channel power optimization in nonlinear WDM systems using gaussian noise model [J]. Journal of Lightwave Technology, 2016, 34(13): 1-1. [12] 贺兴时,丁文静,杨新社. 基于模拟退火高斯扰动的蝙蝠优化算法[J]. 计算机应用研究,2014,31(2):392-397. HE Xingshi, DING Wenjing, YANG Xinshe. Bat algorithm based on simulated annealing and Gaussian perturbations[J]. Application Research of Computers, 2014, 31(2): 392-397. [13] 王芸,孙辉. 一种具有速度扰动的高斯学习粒子群优化算法[J]. 小型微型计算机系统,2015,36(7):1521-1525. WANG Yun, SUN Hui. Gaussian learning particle swarm optimization algorithm based on speed disturbance [J]. Journal of Chinese Computer Systems, 2015, 36(7): 1521-1525. [14] 陈云翔,李琳,李千,等. 基于改进差分进化算法的飞行控制律评估方法[J]. 航空学报,2013,34(6):1261-1268. CHEN Yunxiang, LI Lin, LI Qian, et al . Evaluation method for flight control law based on modified differential evolution algorithm [J]. Acta Aeronautica ET Astronautica Sinica, 2013, 34(6): 1261-1268. [15] LIU X, LI N, HU Y. Combining inferences on the common mean of several inverse Gaussian distributions based on confidence distribution [J]. Statistics & Probability Letters. 2015, 105: 136-142. [16] CHEN X, ZHAO J, HU W, et al . Short-term wind speed forecasting using decomposition-based neural networks combining abnormal detection method[J]. Abstract and Applied Analysis, 2014(1): 1-21. [17] 黄元生,邓佳佳,苑珍珍. 基于 ARMA 误差修正和自适应粒子群优化的 SVM 短期负荷预测[J]. 电力系统保护与控制,2011,39(14):26-32. HUANG Yuansheng, DENG Jiajia, YUAN Zhenzhen. SVM short- term load forecasting based on ARMA error calibration and the adaptive particle swarm optimization [J]. Power System Protection and Control, 2011, 39(14): 26-32. [18] 陈剑勇,苏浩益. 结合支持向量机和马尔可夫链算法的中长期电力负荷预测模型[J]. 南方电网技术,2012,6(1):54-58. CHEN Jianyong, SU Haoyi. A forecasting model of medium/long term power load in combination of the support vector machine and markov Chain algorithms[J]. Southern Power System Technology, 2012, 6(1): 54-58. |