中国电力 ›› 2012, Vol. 45 ›› Issue (3): 68-71.DOI: 10.11930/j.issn.1004-9649.2012.3.68.3

• 新能源 • 上一篇    下一篇

用于短期风速预测的优化核心向量回归模型

李元诚, 杨瑞仙   

  1. 华北电力大学 控制与计算机工程学院,北京 102206
  • 收稿日期:2011-10-26 修回日期:2011-12-14 出版日期:2012-03-18 发布日期:2016-02-29
  • 作者简介:李元诚(1970-),男,山东烟台人,教授,硕士生导师,从事网络安全、智能电网、风力发电方面的研究。

An optimized CVR model for short-term wind speed forecasting

LI Yuan-cheng, YANG Rui-xian   

  1. School of Control and Computer Engineering,North China Electric Power University, Beijing 102206, China
  • Received:2011-10-26 Revised:2011-12-14 Online:2012-03-18 Published:2016-02-29

摘要: 风能的不确定性和难以准确预测给风电并入电网带来了困难。风速是影响风能的重要因素,风速的预测精度对风电功率预测的准确性有重要影响。提出一种优化的核心向量回归(CVR)模型,进行短期风速预测。其风速数据从某风电场每隔1 h采集1次,并采用粒子群优化(PSO)算法对CVR模型的参数进行优化,利用优化后的CVR模型进行风速预测。试验结果表明,在时空复杂度相当的情况下,该方法具有比CVR和SVR(support vector regression )更高的预测精度。

关键词: 风速, 风电功率, 短期预测, 粒子群优化, 核心向量回归

Abstract: It is difficult to merge wind power into a grid, owing to wind power’s uncertainty and prediction inaccuracy. Wind speed is an important factor affecting wind power, so the accuracy of wind speed prediction has a major impact on the wind power prediction. An optimized prediction model based on core vector regression(CVR) is proposed in short-term wind speed forecasting. The wind speed data from a wind farm are collected hourly as the inputs. The particle swarm optimization (PSO) method is used to optimize the CVR model parameters. Experimental results show that the method has higher prediction accuracy than the CVR and support vector regression (SVR) method.

Key words: wind speed, wind power, short-term forecasting, particle swarm optimization(PSO), core vector regression(CVR)

中图分类号: