[1] IEA. World energy outlook 2019 [R]. Paris: International Energy Agency, 2019. [2] KERAMIDAS K, DIAZ V A, WEITZEL M, et al. Global energy and climate outlook 2019: electrification for the low-carbon transition[R]. Luxembourg: Publications Office of the European Union, 2020. [3] IEA. Global energy review 2020: the impacts of the Covid-19 crisis on global energy demand and CO2 emissions [R]. Paris: International Energy Agency, 2020. [4] IPCC. Climate change 2014: synthesis report [M]. Cambridge: Cambridge University Press, 2014. [5] IEA. Power system transition in China [R/OL]. (2020-10-01)[2020-11-01]. https://webstore.iea.org/china-power-system-transformation [6] IEA. Global energy outlook 2019 [R/OL].(2019-11-01) [2020-01-01]. https://www.iea.org/reports/world-energy-outlook-2019 [7] IRENA. Global energy transformation: a roadmap to 2050 [R/OL]. Abu Dhabi: International Renewable Energy Agency, 2018. https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition. [8] 国家发改委能源研究所. 我国实现全球1.5 ℃目标下的能源排放情景研究[R]. 北京: NRDC中国煤控项目, 2018. [9] Lawrence Berkeley National Laboratory. China’s greenhouse gas emission scenarios [R/OL].(2010-01-01)[2020-01-01]. https://escholarship.org/uc/lbnl. [10] McKinsey. Green China development report [R/OL]. (2010-01-01) [2020-09-01]. https://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/Sustainability/cost%20curve%20PDFs/china_green_revolution.ashx. [11] 国家可再生能源中心. 美丽中国2050 年的能源生态系统[R/OL]. (2018-04-20)[2020-09-01]. https://max.book118.com/html/2018/0420/162194247.shtm. [12] Energy Research Institute of National Development and Reform Commission. China 2050 high renewable energy penetration scenario and roadmap study [R]. Beijing: ERI, 2015. [13] Energy Research Institute of National Development and Reform Commission. Reinventing fire: China [R]. Beijing: ERI, 2016. [14] 张文华, 闫庆友, 何钢, 等. 气候变化约束下中国电力系统低碳转型路径及策略[J/OL].气候变化研究进展: 1-10[2021-01-26].http://kns.cnki.net/kcms/detail/11.5368.P.20201210.0940.002.html. ZHANG Wenhua, YAN Qingyou, HE Gang, et al. The pathway and strategy of China’s power system low-carbon transition under the constraints of climate change[J/OL]. Climate Change Research: 1-10[2021-01-26]. http://kns.cnki.net/kcms/detail/11.5368.P.20201210.0940.002.html. [15] 李政, 陈思源, 董文娟, 等. 现实可行且成本可负担的中国电力低碳转型路[J/OL].洁净煤技术: 1-9[2021-01-27].http://kns.cnki.net/kcms/detail/11.3676.td.20201214.1604.002.html. LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Feasible and affordable decarbonization pathways of China’s power sector[J/OL].Clean Coal Technology: 1-9[2021-01-27].http://kns.cnki.net/kcms/detail/11.3676.td.20201214.1604.002.html. [16] 张小丽, 刘俊伶, 王克, 等. 中国电力部门中长期低碳发展路径研究[J]. 中国人口·资源与环境, 2018, 28(4): 68-77 ZHANG Xiaoli, LIU Junling, WANG Ke, et al. Study on medium and long-term low-carbon development pathway of China's power sector[J]. China Population,Resources and Environment, 2018, 28(4): 68-77 [17] BNEF. Hydrogen: update on BNEF special project [R]. Albert Cheung: Bloomberg New Energy Finance, 2019. [18] IRENA. Hydrogen: a renewable energy perspective [R]. Abu Dhabi: International Renewable Energy Agency, 2019. [19] HANK C, GELPKE S, SCHNABL A, et al. Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide - power-to-methanol[J]. Sustainable Energy & Fuels, 2018, 2(6): 1244-1261. [20] IEA. Ready for CCS retrofit- the potential for equipping China’s existing coal fleet with carbon capture and storage [R/OL].(2016-09-01)[2020-11-21]. http://indiaenvironmentportal.org.in/files/file/ThePotentialforEquippingChinasExistingCoal Fleet. pdf. [21] 亚洲开发银行. 中国碳捕集与封存示范和推广路线图研究[R]. 菲律宾: 亚洲开发银行, 2015. [22] IEA. Energy technology perspectives 2020: special report on carbon capture utilization and storage, CCUS in clean energy transitions [R]. Paris: International Energy Agency, 2020. [23] IEA. The role of CCUS in low-carbon power systems [R]. Paris: International Energy Agency, 2020.
|