[1] 胡静, 黄碧斌, 蒋莉萍, 等. 适应电力市场环境下的电化学储能应用及关键问题[J]. 中国电力, 2020, 53(1): 100–107 HU Jing, HUANG Bibin, JIANG Liping, et al. Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power, 2020, 53(1): 100–107 [2] 元博, 张运洲, 鲁刚, 等. 电力系统中储能发展前景及应用关键问题研究[J]. 中国电力, 2019, 52(3): 1–8 YUAN Bo, ZHANG Yunzhou, LU Gang, et al. Research on key issues of energy storage development and application in power systems[J]. Electric Power, 2019, 52(3): 1–8 [3] 郭久亿, 刘洋, 郭焱林, 等. 不同典型用户侧储能配置评估与运行优化模型[J]. 电网技术, 2020, 44(11): 4245–4254 GUO Jiuyi, LIU Yang, GUO Yanlin, et al. Configuration evaluation and operation optimization model of energy storage in different typical user-side[J]. Power System Technology, 2020, 44(11): 4245–4254 [4] 刘勇. 2019年储能产业应用研究报告[R]. 北京: 中国化学与物理电源行业协会储能应用分会产业政策研究中心, 2019. LIU Yong. 2019 Energy storage industry application research report[R]. Beijing: Industrial Policy Research Center of China Industrial Association of Power Sources, 2019. [5] 罗舒瀚, 蒋传文, 王旭, 等. 新电改背景下售电公司的购售电策略及风险评估[J]. 电网技术, 2019, 43(3): 944–953 LUO Shuhan, JIANG Chuanwen, WANG Xu, et al. Power trading strategy and risk assessment of electricity retailing company under power system reform[J]. Power System Technology, 2019, 43(3): 944–953 [6] 陈伯达, 林楷东, 苏洁莹, 等. 基于鲁棒规划的综合能源微网孤岛划分方法[J]. 电力系统自动化, 2020, 44(10): 32–40 CHEN Boda, LIN Kaidong, SU Jieying, et al. Robust planning based method for integrated energy microgrid island partition[J]. Automation of Electric Power Systems, 2020, 44(10): 32–40 [7] LIU Y X, GUO L, WANG C S. A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids[J]. Applied Energy, 2018, 228: 130–140. [8] 张进, 胡存刚, 芮涛. 多微电网参与下的配电侧直接电能交易纳什议价模型[J]. 储能科学与技术, 2019, 8(4): 645–653 ZHANG Jin, HU Cungang, RUI Tao. Nash bargaining model for direct electricity trading on distribution side with multi-microgrids participation[J]. Energy Storage Science and Technology, 2019, 8(4): 645–653 [9] 吴鸣, 寇凌峰, 张进, 等. 多运营主体微电网日前经济优化调度纳什议价方法[J]. 中国电力, 2019, 52(11): 19–27,117 WU Ming, KOU Lingfeng, ZHANG Jin, et al. A day-ahead Nash bargaining method for economic dispatch of the multi-operator micro-grid[J]. Electric Power, 2019, 52(11): 19–27,117 [10] 张进, 胡存刚, 芮涛. 基于交替方向乘子法的主动配电网日前两阶段分布式优化调度策略[J]. 中国电力, 2021, 54(5): 91–100 ZHANG Jin, HU Cungang, RUI Tao. A day-ahead two-stage distributed optimal scheduling method for active distribution network based on ADMM[J]. Electric Power, 2021, 54(5): 91–100 [11] 高红均, 刘俊勇, 魏震波, 等. 主动配电网分层鲁棒规划模型及其求解方法[J]. 中国电机工程学报, 2017, 37(5): 1389–1401 GAO Hongjun, LIU Junyong, WEI Zhenbo, et al. A bi-level robust planning model of active distribution network and its solution method[J]. Proceedings of the CSEE, 2017, 37(5): 1389–1401 [12] CHUA K H, LIM Y S, MORRIS S. Energy storage system for peak shaving[J]. International Journal of Energy Sector Management, 2016, 10(1): 3–18. [13] 尹渠凯, 米增强, 贾雨龙, 等. 基于改进K-means聚类的电力市场下分布式储能系统经济性调控模型[J]. 电力建设, 2019, 40(5): 20–27 YIN Qukai, MI Zengqiang, JIA Yulong, et al. Economy regulation method for distributed energy storage in distribution network according to K-means clustering[J]. Electric Power Construction, 2019, 40(5): 20–27 [14] YANG Y, MA Z, ZHENG J, et al. Research on user energy storage optimization system considering a grid-on new energy[C]// 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence(ICIBA). Chongqing, China. IEEE, 2020: 962–967. [15] WANG K, LI H N, MAHARJAN S, et al. Green energy scheduling for demand side management in the smart grid[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(2): 596–611. [16] 宋航, 刘友波, 刘俊勇, 等. 考虑用户侧分布式储能交互的售电公司智能化动态定价[J]. 中国电机工程学报, 2020, 40(24): 7959–7972,8233 SONG Hang, LIU Youbo, LIU Junyong, et al. Intelligent dynamic pricing of electricity retailers considering distributed energy storage interaction on user side[J]. Proceedings of the CSEE, 2020, 40(24): 7959–7972,8233 [17] 胡诗尧, 安佳坤, 韩璟琳, 等. 基于一致性算法的智能电网储能单元分布式调度策略[J]. 沈阳工业大学学报, 2019, 41(4): 372–377 HU Shiyao, AN Jiakun, HAN Jinglin, et al. Distributed scheduling strategy of smart grid energy storage units based on consistency algorithm[J]. Journal of Shenyang University of Technology, 2019, 41(4): 372–377 [18] 卢艺, 戴月, 马伟哲, 等. 含分布式电源和储能装置的配电网分散式动态最优潮流[J]. 电网技术, 2019, 43(2): 434–444 LU Yi, DAI Yue, MA Weizhe, et al. Decentralized dynamic optimal power flow in distribution networks with distributed generation and energy storage devices[J]. Power System Technology, 2019, 43(2): 434–444 [19] 赵乙潼, 王慧芳, 何奔腾, 等. 面向用户侧的电池储能配置与运行优化策略[J]. 电力系统自动化, 2020, 44(6): 121–128 ZHAO Yitong, WANG Huifang, HE Benteng, et al. Optimization strategy of configuration and operation for user-side battery energy storage[J]. Automation of Electric Power Systems, 2020, 44(6): 121–128 [20] 叶畅, 苗世洪, 李姚旺, 等. 基于改进不确定边界的主动配电网鲁棒优化调度[J]. 电工技术学报, 2019, 34(19): 4084–4095 YE Chang, MIAO Shihong, LI Yaowang, et al. Robust optimal scheduling for active distribution network based on improved uncertain boundary[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4084–4095 [21] NGUYEN H K, KHODAEI A and HAN Z. Incentive mechanism design for integrated microgrids in peak ramp minimization problem[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 5774–5785. [22] 郭尊, 李庚银, 周明, 等. 考虑网络约束和源荷不确定性的区域综合能源系统两阶段鲁棒优化调度[J]. 电网技术, 2019, 43(9): 3090–3100 GUO Zun, LI Gengyin, ZHOU Ming, et al. Two-stage robust optimal scheduling of regional integrated energy system considering network constraints and uncertainties in source and load[J]. Power System Technology, 2019, 43(9): 3090–3100 [23] CUI S C, WANG Y W, XIAO J W, et al. A two-stage robust energy sharing management for prosumer microgrid[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2741–2752. [24] NASH J F JR. The bargaining problem[J]. Econometrica, 1950, 18(2): 155–162. [25] 胡代豪, 郭力, 刘一欣, 等. 计及光储快充一体站的配电网随机-鲁棒混合优化调度[J]. 电网技术, 2021, 45(2): 507–519 HU Daihao, GUO Li, LIU Yixin, et al. Stochastic/robust hybrid optimal dispatching of distribution networks considering fast charging stations with photovoltaic and energy storage[J]. Power System Technology, 2021, 45(2): 507–519
|