[1] 石元春. 中国雾霾的产生机理及应对策略研究[J]. 陕西电力, 2013, 41(4): 1-4 SHI Yuanchun. Frog haze production mechanism & treatment strategy in China[J]. Shaanxi Electric Power, 2013, 41(4): 1-4 [2] CHEN X J, LIU Q Z, YUAN C, et al. Emission characteristics of fine particulate matter from ultra-low emission power plants[J]. Environmental Pollution, 2019, 255(Pt 1): 113157. [3] 徐明厚, 王文煜, 温昶, 等. 燃煤电厂细微颗粒物脱除技术研究新进展[J]. 中国电机工程学报, 2019, 39(22): 6627-6640 XU Minghou, WANG Wenyu, WEN Chang, et al. Research development of precipitation technology to accomplish the ultra-low emission from coal-fired power plants[J]. Proceedings of the CSEE, 2019, 39(22): 6627-6640 [4] 赵秀勇, 朱法华, 王圣, 等. 江苏省火电超低排放对环境空气中PM2.5质量浓度影响模拟研究[J]. 中国电力, 2019, 52(9): 167-172 ZHAO Xiuyong, ZHU Fahua, WANG Sheng, et al. Simulation study of the impacts of ultra-low emission implemented in thermal power plants on PM2.5 mass concentration in ambient air of Jiangsu Province[J]. Electric Power, 2019, 52(9): 167-172 [5] Stationary source emissions—determination of PM10/PM2.5 mass concentration in flue gas—measurement at low concentrations by use of impactors: ISO 23210—2009[S]. [6] Stationary source emissions—test method for determining PM2.5 and PM10 mass in stack gases using cyclone samplers and sample dilution: ISO 25597—2013[S]. [7] 易玉萍, 朱法华, 段玖祥, 等. 燃煤电厂低浓度颗粒物的测试方法研究[J]. 电力科技与环保, 2018, 34(1): 32-36 YI Yuping, ZHU Fahua, DUAN Jiuxiang et al. Research on test methods of low concentrations particulate matter in coal-fired power plant[J]. Electric Power Technology and Environmental Protection, 2018, 34(1): 32-36 [8] 孟令媛, 朱法华, 易玉萍, 等. 燃煤电厂超低排放颗粒物测试方法研究[J]. 中国电力, 2016, 49(10): 123-126 MENG Lingyuan, ZHU Fahua, YI Yuping, et al. Study on testing methods of particulate matter at ultra-low concentration from coal-fired power plants[J]. Electric Power, 2016, 49(10): 123-126 [9] 中华人民共和国生态环境部. 大气细颗粒物一次源排放清单编制技术指南(试行) [EB/OL]. (2014-08-20)[2020-07-03]. http://www.mep.gov.cn/gkml/hbb/bgg/201408/W020140828351293619540.pdf. [10] 中华人民共和国生态环境部. 大气可吸入颗粒物一次源排放清单编制技术指南[EB/OL]. (2014-12-31)[2020-07-03]. http://www.me.gov.cn/gkm1/hbb/bgg/201501/W020150107594587771088.pdf. [11] 刘含笑, 姚宇平, 郦建国, 等. 燃煤电厂PM2.5测试方法研究[J]. 电力与能源, 2018, 39(1): 101-106 LIU Hanxiao, YAO Yuping LI Jianguo et al. PM2.5 test method for coal-fired power plants[J]. Power & Energy, 2018, 39(1): 101-106 [12] 李昌鑫, 王昊, 叶坚锴, 等. 燃煤电厂区域颗粒物及颗粒物汞分布特征研究[J/OL]. 环境科学学报: 1-8[2020-07-03]. https://doi.org/10.13671/j.hjkxxb.2020.0058. LI Changxin, WANG Hao, YE Jiankai, et al. Distribution characteristics of particulate matter and mercury in coal-fired power plants[J]. Journal of Environmental Science: 1-8[2020-07-03]. https://doi.org/10.13671/j.hjkxxb.2020.0058. [13] 蒋靖坤, 邓建国, 李振, 等. 固定污染源排气中PM2.5采样方法综述[J]. 环境科学, 2014, 35(5): 2018-2024 JIANG Jingkun, DENG Jianguo, LI Zhen, et al. Sampling methods for PM2.5 from stationary sources: a review[J]. Environmental Science, 2014, 35(5): 2018-2024 [14] US EPA. Method 201 Determination of PM10 emissions (exhaust gas recycle procedure)[S]. [15] US EPA. Method 201A and 202 Methods for measurement of filterable PM10 and PM2.5 and measurement of condensable particular matter emissions from stationary sources[S]. [16] US EPA. Method 201A 40 CFR Part 51 Methods for measurement of filterable PM10 and PM2.5 and measurement of condensable PM emissions from stationary sources: final rule[S]. [17] 朱法华, 李小龙, 段玖祥, 等. 固定污染源排放可凝结颗粒物采样方法综述[J]. 环境监控与预警, 2019, 11(3): 1-5, 11 ZHU Fahua, LI Xiaolong, DUAN Jiuxiang, et al. A review of sampling methods of condensable particulate matter emission from stationary source[J]. Environmental Monitoring and Forewarning, 2019, 11(3): 1-5, 11 [18] 蒋靖坤, 邓建国, 李振, 等. 双级虚拟撞击采样器应用于固定污染源PM10和PM2.5排放测量[J]. 环境科学, 2016, 37(6): 2003-2007 JIANG Jingkun, DENG Jianguo, LI Zhen, et al. Application of a two-stage virtual impactor in measuring of PM10 and PM2.5 emissions from stationary sources[J]. Environmental Science, 2016, 37(6): 2003-2007 [19] 武亚凤. 燃煤污染源排放颗粒物采样器比对及电厂测试应用[D]. 北京: 中国环境科学研究院, 2017. WU Yafeng. Comparison about particles samplers for coal-fired pollution sources and its application in power plants[D]. Beijing: Chinese Academy of Environmental Sciences, 2017. [20] 白云, 魏云鹏, 范立云, 等. 基于键合图高压共轨喷油波动影响的显著性[J]. 内燃机学报, 2020, 38(3): 280-287 BAI Yun, WEI Yunpeng, FAN Liyun, et al. Significance of the fuel injection fluctuation influence for high pressure common rail system based on Bond graph[J]. Transactions of CSICE, 2020, 38(3): 280-287 [21] 赵立正, 孙保民. 湿烟羽形成及其影响因素分析[J]. 动力工程学报, 2020, 40(6): 502-508, 516 ZHAO Lizheng, SUN Baomin. Analysis on factors influencing the control of wet plume[J]. Journal of Chinese Society of Power Engineering, 2020, 40(6): 502-508, 516 [22] 王娴娜, 朱林, 王东歌, 等. 湿式静电除尘技术在燃煤电厂中的应用[J]. 中国电力, 2016, 49(6): 157-160 WANG Xianna, ZHU Lin, WANG Dongge, et al. Application of wet electrostatic precipitator in coal-fired power plants[J]. Electric Power, 2016, 49(6): 157-160 [23] 朱杰, 许月阳, 姜岸, 等. 超低排放下不同湿法脱硫协同控制颗粒物性能测试与研究[J]. 中国电力, 2017, 50(1): 168-172 ZHU Jie, XU Yueyang, JIANG An, et al. Test and study on performance of wet FGD coordinated particulate matter control for ultra-low pollutants emission[J]. Electric Power, 2017, 50(1): 168-172
|