[1] ZHANG L, ZHUO Y Q, CHEN L, et al. Mercury emissions from six coal-fired power plants in China[J]. Fuel Processing Technology, 2008, 89(11): 1033-1040. [2] 张凡, 邓双, 刘宇, 等. 燃煤电厂大气汞等污染物的排放与控制[M]. 北京: 中国环境出版社, 2015. [3] 中国电力企业联合会. 2020年中国电力行业年度发展报告[R]. 北京: 中国建材工业出版社, 2020. [4] ZHANG Y, YANG J P, YU X H, et al. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices[J]. Fuel Processing Technology, 2017, 158: 272-280. [5] 郭静娟, 刘松涛, 张优, 等. 基于燃煤电厂超低排放的汞分布特性研究[J]. 中国环境监测, 2020, 36(1): 55-59 GUO Jingjuan, LIU Songtao, ZHANG You, et al. Impacts of ultra-low emission in coal-fired power plants on the distribution characteristics of mercury[J]. Environmental Monitoring in China, 2020, 36(1): 55-59 [6] 华晓宇, 章良利, 宋玉彩, 等. 燃煤机组超低排放改造对汞排放的影响[J]. 热能动力工程, 2016, 31(7): 110-116 HUA Xiaoyu, ZHANG Liangli, SONG Yucai, et al. Influence of the ultra low emission modification of a coal-fired unit on the mercury emissions[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(7): 110-116 [7] 宋畅, 张翼, 郝剑, 等. 燃煤电厂超低排放改造前后汞污染排放特征[J]. 环境科学研究, 2017, 30(5): 672-677 SONG Chang, ZHANG Yi, HAO Jian, et al. Mercury emission characteristics from coal-fired power plant before and after ultra-low emission retrofitting[J]. Research of Environmental Sciences, 2017, 30(5): 672-677 [8] 魏绍青, 滕阳, 李晓航, 等. 300 MW等级燃煤机组煤粉炉与循环流化床锅炉汞排放特性比较[J]. 燃料化学学报, 2017, 45(8): 1009-1016 WEI Shaoqing, TENG Yang, LI Xiaohang, et al. Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1009-1016 [9] 王树民, 余学海, 顾永正, 等. 基于燃煤电厂“近零排放”的大气污染物排放限值探讨[J]. 环境科学研究, 2018, 31(6): 975-984 WANG Shumin, YU Xuehai, GU Yongzheng, et al. Discussion of emission limits of air pollutants for ‘near-zero emission’ coal-fired power plants[J]. Research of Environmental Sciences, 2018, 31(6): 975-984 [10] 赵毅, 韩立鹏. 660 MW超低排放燃煤电站汞分布特征研究[J]. 环境科学学报, 2019, 39(3): 853-858 ZHAO Yi, HAN Lipeng. Distribution characteristics of mercury in 660 MW coal-fired power plant with ultra-low emission[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 853-858 [11] 陈磊, 段钰锋, 赵士林, 等. 350 MW超低排放燃煤电厂污染物控制装置对汞的协同脱除[J]. 热能动力工程, 2020, 35(2): 187-193, 200 CHEN Lei, DUAN Yufeng, ZHAO Shilin, et al. Mercury co-removal by the air pollutant control devices in a 350 MW ultra-low emission coal-fired power plant[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(2): 187-193, 200 [12] 王建庆. 煤中汞在空气重介质流化床分选过程中的分配规律[D]. 徐州: 中国矿业大学, 2015. WANG Jianqing. The distribution rule of mercury in coal during the separation process of air dense medium fluidized bed[D]. Xuzhou: China University of Mining and Technology, 2015. [13] LUTTRELL G H, KOHMUENCH J N, YOON R H. An evaluation of coal preparation technologies for controlling trace element emissions[J]. Fuel Processing Technology, 2000, 65/66: 407-422. [14] 冯立品. 煤中汞的赋存状态和选煤过程中的迁移规律研究[D]. 北京: 中国矿业大学, 2009. FENG Lipin. The study of mercury occurrence in coal and migration regularity during coal preparation[D]. Beijing: China University of Mining and Technology, 2009. [15] 吴清茹, 赵子鹰, 杨帆, 等. 中国燃煤电厂履行《关于汞的水俣公约》的差距与展望[J]. 中国人口·资源与环境, 2019, 29(10): 52-60 WU Qingru, ZHAO Ziying, YANG Fan, et al. Gaps and prospects for the implementation of Minamata Convention on Mercury by China's coal-fired power plants[J]. China Population Resources and Environment, 2019, 29(10): 52-60 [16] ZHAO S L, DUAN Y F, YAO T, et al. Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant[J]. Fuel, 2017, 199: 653-661. [17] ZHAO S L, PUDASAINEE D, DUAN Y F, et al. A review on mercury in coal combustion process: content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Progress in Energy and Combustion Science, 2019, 73: 26-64. [18] REYNOLDS J. Multi-pollutant control using membrane-based up-flow wet electrostatic precipitation[R]. Office of Scientific and Technical Information (OSTI), Ohio University, Akron, Ohio, 2004. [19] 睢辉, 张梦泽, 董勇, 等. 燃煤烟气中单质汞吸附与氧化机理研究进展[J]. 化工进展, 2014, 33(6): 1582-1588, 1595 SUI Hui, ZHANG Mengze, DONG Yong, et al. Research progress of adsorption and oxidation mechanism of elemental mercury from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2014, 33(6): 1582-1588, 1595 [20] 赵毅, 韩立鹏. 超低排放燃煤电厂低低温电除尘器协同脱汞研究[J]. 动力工程学报, 2019, 39(4): 319-323, 330 ZHAO Yi, HAN Lipeng. Synergistic removal of mercury by low-low temperature ESP for ultra-low emission coal-fired power plants[J]. Journal of Chinese Society of Power Engineering, 2019, 39(4): 319-323, 330
|