[1] 中国电力企业联合会. 光伏发电站功率预测系统技术要求: NB/T 32011—2013 [S]. 北京: 中国电力出版社, 2013. [2] 李俊峰, 蔡丰波, 乔黎明, 等.2014年中国风电发展报告 [R], 中国循环经济协会可再生能源专业委员会(CREIA), 2014: 1–80. LI Junfeng, CAI Fengbo, QIAO liming, et al.2014 China wind power development report [R], CREIA, 2014: 1–80. [3] 裴哲义, 丁杰, 李晨, 等. 分布式光伏并网问题分析与建议[J]. 中国电力, 2018, 51(10): 80-87 PEI Zheyi, DING Jie, LI Chen, et al. Analysis and suggestion for distributed photovoltaic generation[J]. Electric Power, 2018, 51(10): 80-87 [4] 杨春波, 王晶晶, 康鹏, 等. 基于混合型算法的光伏发电系统低电压穿越控制策略[J]. 中国电力, 2020, 53(3): 18-27, 58 YANG Chunbo, WANG Jingjing, KANG Peng, et al. Research on LVRT control strategy of photovoltaic system based on hybrid control algorithm[J]. Electric Power, 2020, 53(3): 18-27, 58 [5] KUSIAK A, ZHENG H Y, SONG Z. Models for monitoring wind farm power[J]. Renewable Energy, 2009, 34(3): 583-590. [6] SCHLECHTINGEN M, FERREIRA SANTOS I. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection[J]. Mechanical Systems and Signal Processing, 2011, 25(5): 1849-1875. [7] YONA A, SENJYU T, FUNABASHI T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system [C]//2007 IEEE Power Engineering Society General Meeting, June 24–28, 2007. Tampa, FL, USA. IEEE, 2007. [8] 张曦, 康重庆, 张宁, 等. 太阳能光伏发电的中长期随机特性分析[J]. 电力系统自动化, 2014, 38(6): 6-13 ZHANG Xi, KANG Chongqing, ZHANG Ning, et al. Analysis of mid/long term random characteristics of photovoltaic power generation[J]. Automation of Electric Power Systems, 2014, 38(6): 6-13 [9] 叶林, 陈政, 赵永宁, 等. 基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化, 2015, 39(16): 16-22 YE Lin, CHEN Zheng, ZHAO Yongning, et al. Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J]. Automation of Electric Power Systems, 2015, 39(16): 16-22 [10] 王新普, 周想凌, 邢杰, 等. 一种基于改进灰色BP神经网络组合的光伏出力预测方法[J]. 电力系统保护与控制, 2016, 44(18): 81-87 WANG Xinpu, ZHOU Xiangling, XING Jie, et al. A prediction method of PV output power based on the combination of improved grey back propagation neural network[J]. Power System Protection and Control, 2016, 44(18): 81-87 [11] 刘欢. 光伏功率预测在风光储系统中的应用 [D]. 北京: 华北电力大学, 2014. LIU Huan. Research on the application of photovoltaic power forecasting in wind-solar-battery hybrid generation systems [D]. Beijing: North China Electric Power University, 2014. [12] 胡俊杰, 周华嫣然, 李阳. 集群电动汽车平抑光伏波动实时调度策略[J]. 电网技术, 2019, 43(7): 2552-2560 HU Junjie, ZHOU Huayanran, LI Yang. Real-time dispatching strategy for aggregated electric vehicles to smooth power fluctuation of photovoltaics[J]. Power System Technology, 2019, 43(7): 2552-2560 [13] 孙韩, 陈宗海, 武骥. 计及电动汽车不确定性的家庭微电网实时能量调度策略[J]. 电网技术, 2019, 43(7): 2544-2551 SUN Han, CHEN Zonghai, WU Ji. Online energy dispatch strategy for residential microgrid considering uncertainty of electric vehicle[J]. Power System Technology, 2019, 43(7): 2544-2551 [14] 崔全胜, 白晓民, 董伟杰, 等. 用户侧综合能源系统规划运行联合优化[J]. 中国电机工程学报, 2019, 39(17): 4967-4981, 5279 CUI Quansheng, BAI Xiaomin, DONG Weijie, et al. Joint optimization of planning and operation in user-side multi-energy systems[J]. Proceedings of the CSEE, 2019, 39(17): 4967-4981, 5279 [15] HOLLANDS K G T, HUGET R G. A probability density function for the clearness index, with applications[J]. Solar Energy, 1983, 30(3): 195-209. [16] GRAHAM V A, HOLLANDS K G T. A method to generate synthetic hourly solar radiation globally[J]. Solar Energy, 1990, 44(6): 333-341. [17] KARIM S A A, SINGH B S M, RAZALI R, et al. Data compression technique for modeling of global solar radiation[C]//2011 IEEE International Conference on Control System, Computing and Engineering, November 25-27, 2011. Penang, Malaysia. IEEE, 2011. [18] KAYAL P, CHANDA C K. Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network[J]. Renewable Energy, 2015, 75: 173-186. [19] 陈志军. 我国月晴空指数模型探讨[J]. 南京气象学院学报, 2005(5): 75-82 CHEN Zhijun. Exporing the monthly clearness index models in China[J]. Journal of Nanjing Institute of Meteorology, 2005(5): 75-82 [20] 崔杨, 杨海威, 李鸿博. 基于高斯混合模型的风电场群功率波动概率密度分布函数研究[J]. 电网技术, 2016, 40(4): 1107-1112 CUI Yang, YANG Haiwei, LI Hongbo. Probability density distribution function of wind power fluctuation of A wind farm group based on the Gaussian mixture model[J]. Power System Technology, 2016, 40(4): 1107-1112 [21] 申颖, 赵千川, 李明扬. 多时空尺度下风电平滑效应的分析[J]. 电网技术, 2015, 39(2): 400-405 SHEN Ying, ZHAO Qianchuan, LI Mingyang. Analysis on wind power smoothing effect in multiple temporal and spatial scales[J]. Power System Technology, 2015, 39(2): 400-405 [22] 杨贵恒, 张海呈, 张颖超. 太阳能光伏发电系统及其应用 [M]. 北京: 化学工业出版社, 2015. [23] 赵亮, 黎嘉明, 艾小猛, 等. 光伏出力随机性分量的提取和统计特性分析[J]. 电力系统自动化, 2017, 41(1): 48-56 ZHAO Liang, LI Jiaming, AI Xiaomeng, et al. Analysis on random component extraction and statistical characteristics of photovoltaic power[J]. Automation of Electric Power Systems, 2017, 41(1): 48-56 [24] 崔杨, 李焕奇, 严干贵, 等. 计及汇聚特性的光伏电站群集中外送输电容量优化配置方法[J]. 电网技术, 2015, 39(12): 3491-3496 CUI Yang, LI Huanqi, YAN Gangui, et al. An optimization method to determine integrated power transmission capacity of clustering photovoltaic plants based on clustering effect[J]. Power System Technology, 2015, 39(12): 3491-3496 [25] 崔杨, 穆钢, 刘玉, 等. 风电功率波动的时空分布特性[J]. 电网技术, 2011, 35(2): 110-114 CUI Yang, MU Gang, LIU Yu, et al. Spatiotemporal distribution characteristic of wind power fluctuation[J]. Power System Technology, 2011, 35(2): 110-114 |