[1] 焦树建. 燃气-蒸汽联合循环的理论基础[M]. 清华大学出版社, 2003. [2] OGAJI S O T, SINGH R, PROBERT S D. Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine[J]. Applied Energy, 2002, 71(4):321-339. [3] OGAJI S O T, SAMPATH S, SINGH R, et al. Parameter selection for diagnosing a gas-turbine's performance-deterioration[J]. Applied Energy, 2002, 73(1):25-46. [4] 张高强, 付忠广, 王树成, 等. 燃气-蒸汽联合循环进气冷却系统对机组性能影响研究[J]. 中国电力, 2018, 51(12):36-41 ZHANG Gaoqiang, FU Zhongguang, WANG Shucheng, et al. Research on the impacts of gas-steam combined cycle air-inlet cooling system on unit performance[J]. Electric Power, 2018, 51(12):36-41 [5] 黄郑, 殳建军, 于国强, 等. 燃气-蒸汽联合循环机组循环水泵优化管理系统设计与开发[J]. 中国电力, 2019, 52(3):121-126 HUANG Zheng, SHU Jianjun, YU Guoqiang, et al. Cycle pump optimization management system for CCGT power plant[J]. Electric Power, 2019, 52(3):121-126 [6] MESKIN N, NADERI E, KHORASANI K. A multiple model-based approach for fault diagnosis of jet engines[J]. IEEE Transactions on Control Systems Technology, 2013, 21(1):254-262. [7] NADERI E, MESKIN N, KHORASANI K. Nonlinear fault diagnosis of jet engines by using a multiple model-based approach[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(1):63-75. [8] NAPOLITANO M R, AN Y, SEANOR B A. A fault tolerant flight control system for sensor and actuator failures using neural networks[J]. Aircraft Design, 2000, 3(2):103-128. [9] VANINI Z N S, MESKIN N, KHORASANI K. Multiple-model sensor and components fault diagnosis in gas turbine engines using autoassociative neural networks[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(9):1429-1445. [10] XIRADAKIS N, LI Y G. Gas turbine and sensor fault diagnosis with nested artificial neural networks[C]//ASME Turbo Expo 2004:Power for land, sea, and air. Vienna, Austria, 2004:351-359. [11] PALMÉ T, FAST M, THERN M. Gas turbine sensor validation through classification with artificial neural networks[J]. Applied Energy, 2011, 88(11):3898-3904. [12] CHEN J, LI H, SHENG D, et al. A hybrid data-driven modeling method on sensor condition monitoring and fault diagnosis for power plants[J]. International Journal of Electrical Power & Energy Systems, 2015, 71:274-284. [13] 司风琪, 李欢欢, 徐治皋. 基于鲁棒输入训练神经网络的非线性多传感器故障诊断方法及其应用[J]. 东南大学学报(自然科学版), 2011, 41(3):574-578 SI Fengqi, LI Huanhuan, XU Zhigao. Nonlinear multi-sensor fault diagnosis method and its application based on robust input-training neural network[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(3):574-578 [14] OGAJI S O T, SAMPATH S, MARINAI L, et al. Evolution strategy for gas-turbine fault-diagnoses[J]. Applied Energy, 2005, 81(2):222-230. [15] HU Y, PALMÉ T, FINK O. Fault detection based on signal reconstruction with auto-associative extreme learning machines[J]. Engineering Applications of Artificial Intelligence, 2017, 57:105-117. [16] HU Y, CHEN H, LI G, et al. A statistical training data cleaning strategy for the PCA-based chiller sensor fault detection, diagnosis and data reconstruction method[J]. Energy and Buildings, 2016, 112:270-278. [17] CHOI S W, LEE I B. Multiblock PLS-based localized process diagnosis[J]. Journal of Process Control, 2005, 15(3):295-306. [18] RAHME S, MESKIN N. Adaptive sliding mode observer for sensor fault diagnosis of an industrial gas turbine[J]. Control Engineering Practice, 2015, 38:57-74. [19] 陈娇, 王永泓, 翁史烈. 广义回归神经网络在燃气轮机排气温度传感器故障检测中的应用[J]. 中国电机工程学报, 2009, 29(32):92-97 CHEN Jiao, WANG Yonghong, WENG Shilie. Application of general regression neural network in fault detection of exhaust temperature sensors on gas turbines[J]. Proceedings of the CSEE, 2009, 29(32):92-97 |