[1] 陈牧, 胡玉清, 桂本. 利用协同治理技术实现燃煤电厂烟尘超低排放[J]. 中国电力, 2015, 48(9):146-151.CHEN Mu, HU Yuqing, GUI Ben. Synergistic control technology for ultra-low PM emission from coal-fired power plants and its application[J]. Electric Power, 2015, 48(9):146-151.
[2] TRAVIS T. Developments for the precombustion removal of inorganic sulfur from coal[J]. Fuel Processing Technology. 1995, 43(2):123-128.
[3] 朱法华, 许月阳, 王圣. 燃煤电厂超低排放技术重大进展回顾及应用效果分析[J]. 环境保护, 2016, 44(6):59-63.ZHU Fahua, XU Yueyang, WANG Sheng. Reviewing the ultra-low emissions technology major progress of coal-fired power plants and analyzing its application effect[J]. Environmental Protection, 2016, 44(6):59-63.
[4] 朱杰, 许月阳, 姜岸, 等. 超低排放下不同湿法脱硫协同控制颗粒物性能测试与研究[J]. 中国电力, 2017, 50(1):168-172.ZHU Jie, XU Yueyang, JIANG An, et al. Test and study on performance of wet FGD coordinated particulate matter control for ultra-Low pollutants emission[J]. Electric Power, 2017, 50(1):168-172.
[5] WANG Y I, JAMES P W. The calculation of wave-plate demister efficiencies using numerical simulation of the flow field and droplet motion[J]. Chemical Engineering Research and Design, 1998, 76(8):980-985. (已核对)
[6] USHIKI K, NISHIZAWA E., BENIKO H, et al. Performance of a droplet separator with multistage rows of flat blades[J]. Journal of Chemical Engineering of Japan, 2006, 15(4):292-298.
[7] XU Yichen, YANG Zhenming, ZHANG Jinsong. Study on performance of wave-plate mist eliminator with porous foam layer as enhanced structure. part I:numerical simulation[J]. Chemical Enginering Science, 2017, 171(2):650-661.(已核对)
[8] WANG W, DAVIES G A. CFD studies of separation of mists from gases using vane-type separators[J]. Chemical Engineering Research & Design, 1996, 74(2):232-238.
[9] VERLAAN C C J. Performance of novel mist eliminators[D]. Delft:Delft University of Technology, 1991.
[10] KAVOUSI F., BEHJAT Y., SHAHHOSSEINI S. Optimal design of drainage channel geometry parameters in vane demister liquid-gas separators[J]. Chemical Engineering Research & Design, 2013, 91(7):1212-1222.(已核对)
[11] AZZOPARDI B J, SANAULLAH K S. Re-entrainment in wave-plate mist eliminators[J]. Chemical Engineering Science, 2002, 57(17):3557-3563.
[12] 洪文鹏, 雷鉴琦. 加装钩片对除雾器性能影响的数值研究[J]. 动力工程学报, 2016, 36(1):59-64.HONG Wenpeng, LEI Jianqi. Numerical study on performance of serrated baffles with hooks[J]. Journal of Chinese Society of Power Engineering, 2016, 36(1):59-64.
[13] GALLETTI C G, ELISABETTA B, LEONARDO T. A numerical model for gasflow and droplet motion in wave-plate mist eliminators with drainage channels[J]. Chemical Engineering Science, 2008, 63(23):5639-5652.
[14] 孙志春, 郭永红, 肖海平, 等. 鼓泡脱硫塔除雾器除雾特性数值研究及实验验证[J]. 中国电机工程学报, 2010, 30(8):68-75.SUN Zhichun, GUO Yonghong, XIAO Haiping, et al. Numerical simulation and experimental validation on demisting characteristic of the mist eliminator for jet bubble reactor dusulfurization system[J]. Proceedings of the CSEE, 2010, 30(8):68-75.
[15] ZIEBOLD S A, AZWELL D E. Increasing the capacity of high-efficiency diffusion fiber beds in smelter gas plants[J]. Journal of the Minerals, 2006, 58(10):59-62.
[16] JAMES P W, AZZOPARDI B J, WANG Y, et al. A model for liquid film flow and separation in a wave-plate mist eliminator[J] Chemical Engineering Research and Design, 2005, 83(5):469-477.
[17] WANG Y I, JAMES P W. The calculation of wave-plate demister efficiencies using numerical simulation of the flow field and droplet motion[J]. Chemical Engineering Research & Design, 1998, 76(8):980-985.
[18] 徐淑君, 姚征, 朱懿渊. 波纹板除雾器两相流动的数值模拟与分析[J]. 上海理工大学学报, 2007, 29(3):275-280.XU Shujun, YAO Zheng, ZHU Yiyuan. Numerical simulation on two phase flow in demister with corrugated baffle[J]. Journal of University of Shanghai for Science and Technology, 2007, 29(3):275-280.
[19] 石振晶, 陶明, 何育东, 等. 喷淋脱硫塔内除雾器性能数值模拟[J]. 热力发电, 2016, 45(3):92-97, 104.SHI Zhenjing, TAO Ming, HE Yudong, et al. Numerical simulation on demister performance of spray tower desulfurization system[J]. Thermal Power Generation, 2016, 45(3):92-97, 104.
[20] LEBEDEV Y N, BERBERG I A Z, LOZHKIN Y P, et al. High-efficiency mist eliminators[J]. Chemistry and Technology of Fuels and Oils, 2002, 38(1):42-45. |