[1] 刘镒民. 典型600 MW汽轮机运行特性的回归分析[J]. 动力工程,1992,12(6):8-11. LIU Jian-min. Regressive analysis of operational characteristics of typical 600 MW turbine [J]. Power Engineering, 1992, 12(6): 8-11. [2] 黄锦涛,武学素. 应用多元线性回归原理建立300 MW抽汽凝汽式汽轮机组的特性方程[J]. 动力工程,1993,13(4):16-20. HUANG Jin-tao, WU Xue-su. Derivation of characteristic equations for 300 MW extraction-condensing turbine[J]. Power Engineering, 1993, 13(4): 16-20. [3] 叶春,忻建华. 混合神经网络在汽轮机在线性能分析中的应用研究[J]. 动力工程,1999,19(5):342-345. YE Chun, XIN Jian-hua. A hybrid artificial neural network model used to online analyze the heat rate of steam turbine system [J]. Power Engineering, 1999, 19(5): 342-345. [4] 王秋平,马春林,肖玲玲,等. 基于蚁群算法-BP神经网络的主蒸汽温度控制系统仿真研究[J]. 热力发电,2013,42(11):64-68,85. WANG Qiu-ping, MA Chun-lin, XIAO Ling-ling, et al . Main steam temperature control based on ant colony optimization algorithm and BP neural network[J]. Thermal Power Generation, 2013, 42(11): 64-68, 85. [5] 王雷,张欣刚,王洪跃,等. 基于支持向量回归算法的汽轮机热耗率模型[J]. 动力工程,2007,27(1):19-23,49. WANG Lei, ZHANG Xin-gang, WANG Hong-yue, et al . Model for the turbine heat rate based on the support vector regression[J]. Journal of Power Engineering, 2007, 27(1): 19-23,49. [6] 张文琴,付忠广,靳涛,等. 基于偏最小二乘算法的热耗率回归分析[J]. 现代电力,2009,26(5):56-59. ZHANG Wen-qin, FU Zhong-guang, JIN Tao, et al . Heat rate regression analysis based on partial least squares algorithm[J]. Modern Electric Power, 2009, 26(5): 56-59. [7] MA J S, THEILER J, PERKINS S. Accurate on-line support vector regression[J]. Neural Computation, 2003, 15(11): 2683-2703. [8] 杜树新,吴铁军. 回归型加权支持向量机方法及其应用[J]. 浙江大学学报,2004,38(3):302-308. DU Shu-xin, WU Tie-jun. Weighted support vector machines for regression and its application[J]. Journal of Zhejiang University (Engineering Science), 2004, 38(3): 302-308. [9] 鲍永胜,吴振升. 基于SVM的时间序列短期风俗预测[J]. 中国电力,2011,44(9):61-64. BAO Yong-sheng, WU Zhen-sheng. Short-term wind speed forecasting based on SVM time-series method[J]. Electric Power, 2011, 44(9): 61-64. [10] 陈超,黄国勇,邵宗凯,等. 基于日特征量相似日的PSO-SVM短期负荷预测[J].中国电力,2013,46(7):91-94. CHEN Chao, HUANG Guo-yong, SHAO Zong-kai, et al . Short- term load forecasting for similar days based on PSO-SVM and daily feature vector [J]. Electric Power, 2013, 46(7): 91-94. [11] 汪辉,皮道映,孙优贤. 支持向量机在线训练算法及其应用[J].浙江大学学报,2004,38(12):1642-1649. WANG Hui, PI Dao-ying, SUN You-xian. On-line support vector machine training algorithm and its application[J]. Journal of Zhejiang University(Engineering Science), 2004, 38(12): 1642-1649. [12] 司风琪,周建新,仇晓智,等. 在线监测燃煤锅炉NO x 排放的自适应支持向量机[J].动力工程,2008,28(6):896-900. SI Feng-qi, ZHOU Jian-xin, QIU Xiao-zhi, et al . An adaptive support vector machine model for the on-line monitoring of boiler NO x emissions in coal-fired boiler[J]. Journal of Power Engineering, 2008, 28(6): 896-900. |