[1] 岳光溪. 循环流化床燃煤技术在我国的快速发展[J]. 中国科技产业,2006(2):43-47. YUE Guang-xi. Rapid development of CFB coal combustion technology in China[J]. Science and Technology Industry of China, 2006(2): 43-47. [2] 岳光溪. 循环流化床燃煤技术在我国的发展与前景[J]. 电力设备,2008,9(5):104-106. YUE Guang-xi. Development and prospects of CFB coal combustion technology in China [J]. Electrical Equipment, 2008, 9(5): 104-106. [3] 陈秋,张志强,郁金星. 循环流化床烟气脱硫系统运行的技术分析[J]. 电力建设,2011,32(11):51-54. CHEN Qiu, ZHANG Zhi-qiang, YU Jin-xing. Technical analysis of operation problems about circulating fluid bed-flue gas desulfurization (CFB-FGD) [J]. Electric Power Construction, 2011, 32(11): 51-54. [4] 毛健雄. 超(超)临界循环流化床直流锅炉技术的发展[J]. 电力建设,2010,31(1):1-6. MAO Jian-xiong. Development of supercritical/ultra-supercritical CFB boiler technology[J]. Electric Power Construction, 2010, 31(1): 1-6. [5] 赵发家,董志乾,王家万,等. 300 MW 循环流化床锅炉运行优化 [J]. 中国电力,2008,41(2):30-33. ZHAO Fa-jia, DONG Zhi-qian, WANG Jia-wan, et al . Operational optimization of 300 MW CFB boiler [J]. Electric Power, 2008, 41(2): 30-33. [6] 江蛟. CFB电厂厂用电分析及降低措施[J]. 热机技术,2004(4):1-6. JIANG Jiao. Analysis of power consumption and reducing measures of CFB power plant [J]. Heat Power Technics, 2004(4): 1-6. [7] 杨石,杨海瑞,吕俊复,等. 基于流态重构的低能耗循环流化床锅炉技术[J]. 电力技术,2010,19(2):9-16. YANG Shi, YANG Hai-rui, LU Jun-fu, et al . The lower energy consumption CFB technology based on state specification design theory [J]. Electric Power Technology, 2010, 19(2): 9-16. [8] 苏建民. 基于流态重构的循环流化床锅炉节能燃烧技术的应用实践[J]. 动力工程学报,2011,31(3):170-175. SU Jian-min. Application practices of energy saving combustion technologies for circulating fluidized bed boiler based on flow pattern reconstruction[J]. Journal of Chinese Society of Power Engineering, 2011, 31(3): 170-175. [9] 李斌,李建锋,盛建华,等. 300 MW 级循环流化床锅炉机组运行分析[J]. 中国电力,2012,45(2):35-39. LI Bin, LI Jian-feng, SHENG Jian-hua, et al . Status of 300 MW circulating fluidized bed boiler unit operation [J]. Electric Power,2012, 45(2): 35-39. [10] RITTINGER P R. Lehrbuch der Aufbereitungskunde[C]//Berlin, BRD.1867. [11] KICK F. Das Gesetz der proportionalen Widerstande und seine Anwendung [C]//Leipzig, BRD. 1885. [12] BOND F C. The third theory of comminution[J]. Trans. AIME,1952, 193: 484-494. [13] WALKER W H, LEWIS W K, MCADAMS W H, et al . Principles of chemical engineering [M]. New York: McGraw-Hill, 1937. [14] HUKKI R T. Proposal for a solomonic settlement between the theories of von Rittinger, Kick and Bond[J]. Trans. AIME, 1961(220): 403-408. [15] CHARLES R J. Energy-size reduction relationships in comminution[J]. Trans. AIME, Min. Eng., 1957(208): 80-88. [16] STAMBOLIADIS E T. A contribution to the relationship of energy and particle size in the comminution of brittle particulate materials [J]. Minerals Engineering, 2002, 15(10): 707-713. [17] 吴明珠,熊志章,唐荣. 粉碎功耗规律的研究[J]. 有色金属:选矿部分,1983(4):20-25. WU Ming-zhu, XIONG Zhi-zhang, TANG Rong. Research on energy consumption of comminution[J]. Nonferrous Metals: Mineral Processing, 1983(4): 20-25. [18] ENGLMAN R, RIVIER N, JAEGER Z. Size-distribution in sudden breakage by the use of entropy maximization[J]. Journal of Applied Physics, 1988, 63(9): 4766-4768. [19] 夏德宏,张省现,吴祥宇. 煤粉碎粒度分布的分形模型[J]. 矿冶,2005,14(1):36-39. XIA De-hong, ZHANG Sheng-xian, WU Xiang-yu. Fractal model of particle-size distribution for coal fragmentation [J]. Mining and Metallurgy, 2005, 14(1): 36-39. |