[1] 吕启深,曾辉雄,姚森敬,等. 基于贝叶斯网络和粗糙集约简的变压器故障诊断[J]. 中国电力,2013,46(9):75-80. LU Qishen, ZENG Huixiong, YAO Senjing, et al. Transformer fault diagnosis method based on bayesian network and rough set reduction theory [J]. Electric Power, 2013, 46(9): 75-80. [2] 张艳,吴玲. 基于支持向量机和交叉验证的变压器故障诊断[J].中国电力,2012,45(11):52-55. ZHANG Yan, WU Ling. Transformer fault diagnosis based on C-SVC and cross-validation algorithm [J]. Electric Power, 2012, 45(11): 52-55. [3] 黄新波,宋桐,王娅娜,等. 基于贝叶斯和模糊L-M网络的变压器故障诊断[J]. 电力建设,2014,35(2):1-6. HUANG Xinbo, SONG Tong, WANG Yana, et al. Transformer fault diagnosis based on bayesian and fuzzy L-M network[J]. Electric Power Construction, 2014, 35(2): 1-6. [4] 李斌,徐建源. 变压器油中溶解气体的多智能体故障诊断方法[J]. 中国电力,2011,44(2):82-86. LI Bin, XU Jianyuan. Multi-agent fault diagnosis method based on dissolved gases in transformer oil [J]. Electric Power, 2011, 44(2): 82-86. [5] ZHANG Y, LIU Y. An artificial neural network approach to transformer fault diagnosis [J]. IEEE Trans on Power Delivery,1996, 11(4): 1836-184l. [6] 谢可夫,罗安. 遗传算法在变压器故障诊断中的应用[J]. 电力自动化设备,2005,25(4):55-58. XIE Kefu, LUO An. Fuzzy diagnosis system optimized with genetic algorithm for power transformer[J]. Electric Power Automation Equipment, 2005, 25(4): 55-58. [7] 李俭,孙才新. 基于灰色聚类分析的充油电力变压器绝缘故障诊断的研究[J]. 电工技术学报,2002,17(4):80-83. LI Jian, SUN Caixin. Study on fault diagnosis of insulation of oil-immersed transformer based on grey cluster theory[J].Transactions of China Electrotechnical Society, 2002, 17(4): 80-83. [8] 王健. 信息融合技术在变压器故障诊断中的应用[D]. 上海:华东理工大学,2012:6-8. [9] 杨正友,彭涛. 基于贝叶斯推断LS-SVM的滚动轴承故障诊断[J]. 电子测量与仪器学报,2010,24(5):420-424. YANG Zhenyou, PEN Tao. Bayesian inference LS-SVM based fault diagnosis method for rolling bearing [J]. Journal of Electionic measurement and instrument, 2010, 24(5): 420-424. [10] 刘东辉,卞建鹏,付平,等. 支持向量机最优参数选择的研究 [J]. 河北科技大学学报,2009,30(1):58-61. LIU Donghui, BIAN Jianpeng, FU Ping, et al. Study on the choice optimum parameters of support vector machine[J]. Joumal of Hebei University of Science and Technology, 2009, 30(1): 58-61. [11] 江伟,罗毅,涂光瑜. 基于多类支持向量机的变压器故障诊断模型[J]. 水电能源科学,2007,25(1):52-55. JIANG Wei, LUO Yi, TU Guangyu. Fault diagnosis model for power transformer based on multiclass support vector machine [J].Water Resources and Power, 2007, 25(1): 52-55. [12] CRISTIANINI N, JOHN S T. An introduction to support vector machines and other kernel based learning methods[M]. Beijing:Publishing House of Electronics Industry, 2004. [13] VAN GESTEL T, SUYKENS J A K, LANCKRIET G, et al. Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis[J]. Neural Computation, 2002, 14(5): 1115-1147. [14] 赵政,王红梅. 后验概率在多分类支持向量机上的应用[J]. 计算机应用,2005,25(1):25-27. ZHAO Zheng, WANG Hongmei. Application of posterior pro- bability to multiclass SVM[J]. Computer Applications, 2005, 25(1):25-27. [15] VAN GESTEL T, SUYKENS J A K, LANCKRIET G, et al. Multiclass LS-SVMs: Moderated outputs and coding de-coding schemes[J].Neural Processing Letters, 2002, 15(1): 45-58. [16] HASTIE T T R. Classification by pairwise coupling[J].The Annals of Statistics, 1998, 26(1): 451-471. [17] 张翔,肖小玲,徐光祐.支持向量机方法中加权后验概率建模方法[J]. 清华大学学报:自然科学版,2007,47(10):1689-1691. ZHANG Xiang, XIAO Xiaoling, XU Guangyou. Weighted poste- rior probability output for support vector machines[J]. Tsinghua Univ: Sci & Tech, 2007, 47(10): 1689-1691. [18] VAPNIK V. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-998. [19] 司马丽萍,舒乃秋. 基于SVM和D-S证据理论的电力变压器内部故障部位识别[J]. 电力自动化设备,2012,32(11):72-76. SIMA L P, SHU N Q. Identification of interior fault position based on SVM and D-S evidence theory for electric transformer[J]. Electric Power Automation Equipment, 2012, 32(11): 72-76. [20] DL/T 722—2000 变压器油中溶解气体分析和判断导则[S]. [21] 刘晓津. 基于支持向量机和油中溶解气体分析的变压器故障诊断[D]. 天津:天津大学,2007:63-55. |