中国电力 ›› 2015, Vol. 48 ›› Issue (3): 50-55.DOI: 10.11930.2015.3.50

• 电网 • 上一篇    下一篇

基于PMU和改进支持向量机算法的同调机群在线识别

田雨1,梁海峰1,康毅2,高亚静1,刘克权2,李晓虎2,王耿2   

  1. 1. 新能源电力系统国家重点实验室华北电力大学,河北 保定 071003;
    2. 国网甘肃省电力公司,甘肃 兰州 730030
  • 收稿日期:2014-12-09 出版日期:2015-03-25 发布日期:2015-11-27
  • 作者简介:田雨(1990—),男,河北邯郸人,硕士研究生,从事电力系统稳定分析与控制方面的研究。E-mail: tianyu336@163.com
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(No.12MS107)

On-Line Identification of Coherent Generators Based on PMU and Improved Support Vector Machine

TIAN Yu1, LIANG Haifeng1, KANG Yi2, GAO Yajing1, LIU Kequan2, LI Xiaohu2, WANG Geng2   

  1. 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University, Baoding 071003, China;
    2. State Grid Gansu Electric Power Company, Lanzhou 730030, China
  • Received:2014-12-09 Online:2015-03-25 Published:2015-11-27
  • Supported by:
    This work is supported by the Fundamental Research Funds for the Central Universities(No.12MS107)

摘要: 鉴于现代电力系统中发生暂态稳定问题时,为了给后续的主动解列措施提供依据,需要快速准确地辨识出系统中的同调机群,基于同步相量测量单元(phasor measurement unit,PMU)实时采集的发电机动态轨迹信息具有高维度和非线性等特点,提出了一种在线识别同调机群的新方法:由PMU得到故障后发电机组的动态功角轨迹量测信息;对PMU量测信息进行标准化处理,生成标准化高维数据;利用留一交叉验证法确定Gauss径向基核函数参数g和惩罚系数C的最优取值,得到准确的分类器;使用此分类器对未知分类的样本进行分类,并得到最终的同调分群结果。仿真结果表明:该方法能有效克服传统方法识别准确率低和速度慢的缺点,能在线识别系统中的同调机群,且兼具识别的快速性和准确性,可满足现代电力系统暂态稳定的在线分析和实时计算等要求。

关键词: 电力系统, 暂态稳定, 主动解列, 同步相量测量单元, 支持向量机, 留一交叉验证法, 同调机群, 在线识别

Abstract: When transient stability problems occur in the modern power systems, it is necessary to identify coherent generators quickly and accurately, which can provide the basis for the controlled islanding strategy in the next step. On account of dynamic trajectory information of generators measured by PMU tends to be high dimensional and nonlinear, a new method for online identification of coherent generators is proposed. Firstly, the dynamic rotor angle trajectory information can be measured by PMU. Then the information measured by PMU should be normalized to generate the standardized and high-dimensional data. After that, the optimal value of Gauss radial basis kernel function parameter g and penalty coefficient C can be determined by using LOO-CV, and the accurate classification model can be generated. Finally, this accurate classification model can be used to classify the unknown samples and get the final classification results. The simulation results show that the new method can overcome the shortcomings of the traditional methods and identify the coherent generators online both quickly and accurately, meeting the requirements of on-line analysis and real-time computing of transient stability in modern power system.

Key words: power system, transient stability, active islanding, phasor measurement unit (PMU), support vector machine (SVM), leave-one- out cross validation (LOO-CV), coherent generators, on-line identification

中图分类号: