中国电力 ›› 2015, Vol. 48 ›› Issue (2): 111-116.DOI: 10.11930.2015.2.111

• 信息与通信 • 上一篇    下一篇

基于云计算的电力大数据分析技术与应用

吴凯峰1,刘万涛2,李彦虎2,苏伊鹏2,肖政1,裴旭斌3,虎嵩林2   

  1. 1. 国网电力科学研究院,北京 100761;
    2. 中国科学院计算技术研究所,北京 100190;
    3. 国网浙江省电力公司,浙江 杭州 310007
  • 收稿日期:2014-10-29 出版日期:2015-02-25 发布日期:2015-11-30
  • 作者简介:吴凯峰(1966—),男,河北唐山人,博士,高级工程师,从事电力信息化建设与运行、计算机网络、云计算与大数据研究及应用工作。E-mail: kf-wu@sgcc.com.cn
  • 基金资助:
    国家电网公司2012年重点科技项目(国家电网智【2012】805号)

Cloud-Computing Based Power Big Data Analysis Technology and Its Application

WU Kaifeng1, LIU Wantao2, LI Yanhu2, SU Yipeng2, XIAO Zheng1, PEI Xubin3, HU Songlin2   

  1. 1. State Grid Electric Power Research Institute, Beijing 100761, China;
    2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
    3. State Grid Zhejiang Electric Power Company Limited, Hangzhou 310007, China
  • Received:2014-10-29 Online:2015-02-25 Published:2015-11-30
  • Supported by:
    The project is supported by Technology Project of the State Grid Corporation of China under Grant No.SG[2012]805.

摘要: 为解决电力数据分析系统在大数据时代面临的严重的性能与可伸缩性瓶颈,更好地满足生产、营销等系统的需求,分析了云计算技术的优势,提出了基于云计算的电力大数据分析系统体系结构及关键技术。基于分布式并行计算框架Hadoop和Hive,面向电力大数据特征,设计了多维索引、SQL自动翻译工具和支持数据更新的混合存储模型3项性能提升技术,实现对传统电力数据分析系统的升级优化。在浙江电力用电信息采集系统的实际部署经验表明,和传统电力数据分析系统相比,该系统以1/8的硬件成本,获得平均5倍的性能优势。证明了云计算技术能够显著提升电力大数据查询与分析性能并有效降低成本。

关键词: 电力, 大数据, 云计算, 用电信息, 数据采集, 数据分析

Abstract: In order to deal with the bottlenecks of the performance and scalability of power data analysis in present big data era and meet the requirements of power production and marking systems, the advantages of cloud computing technology is firstly analyzed, then the architecture and key techniques of Hadoop-based power big data analysis system are proposed. The architecture combines the characteristics of power big data and the emerging cloud computing technology, and includes three key technologies, i.e., the distributed gridfile based multi-dimensional index, the automatic SQL to HiveQL translation tool and the hybrid data storage model, which can support data update operation. Therefore, the traditional power data analysis system can be improved and updated. The application of the system in the power information collection system in Zhejiang indicates that the performance of the system is improved by 5 times with only one-eighth of the hardware configuration as compared with the traditional system. This proves that the cloud computing technology can significantly improve the performance and reduce the cost of big data acquisition and analysis.

Key words: electric power, big data, cloud computing, electricity information, data acquisition, data analysis

中图分类号: