Electric Power ›› 2023, Vol. 56 ›› Issue (7): 1-11.DOI: 10.11930/j.issn.1004-9649.202209064
• Special Contribution • Previous Articles Next Articles
WU Tong, HUI Hongxun, ZHANG Hongcai
Received:
2022-09-26
Revised:
2023-06-08
Accepted:
2022-12-25
Online:
2023-07-23
Published:
2023-07-28
Supported by:
WU Tong, HUI Hongxun, ZHANG Hongcai. Review of Commercial Air Conditioners for Participating in Urban Grid Regulation[J]. Electric Power, 2023, 56(7): 1-11.
[1] 王林钰, 张富强, 龚一莼, 等. 中国跨能源品种可调节资源潜力与开发利用情景[J]. 中国电力, 2023, 56(6): 1–10 WANG Linyu, ZHANG Fuqiang, GONG Yichun, et al. Potential and utilization scenarios for regulation resources across energy varieties in China[J]. Electric Power, 2023, 56(6): 1–10 [2] 王金丽, 李丰胜, 解芳, 等. “双碳”战略背景下新型配电系统技术标准体系[J]. 中国电力, 2023, 56(5): 22–31 WANG Jinli, LI Fengsheng, XIE Fang, et al. Research on technical standard system of new distribution system under double-carbon strategy[J]. Electric Power, 2023, 56(5): 22–31 [3] 宋永华, 林今, 胡泽春, 等. 能源局域网: 物理架构、运行模式与市场机制[J]. 中国电机工程学报, 2016, 36(21): 5776–5787, 6020 SONG Yonghua, LIN Jin, HU Zechun, et al. Energy distribution network: infrastructure, operation mode and market mechanism[J]. Proceedings of the CSEE, 2016, 36(21): 5776–5787, 6020 [4] 王成山, 刘梦璇, 陆宁. 采用居民温控负荷控制的微网联络线功率波动平滑方法[J]. 中国电机工程学报, 2012, 32(25): 36–43, 8 WANG Chengshan, LIU Mengxuan, LU Ning. A tie-line power smoothing method for microgrid using residential thermostatically-controlled loads[J]. Proceedings of the CSEE, 2012, 32(25): 36–43, 8 [5] 代贤忠, 韩新阳, 靳晓凌. 需求响应参与电力平衡的成本效益评估方法[J]. 中国电力, 2022, 55(10): 170–177 DAI Xianzhong, HAN Xinyang, JIN Xiaoling. Cost-benefit assessment method for demand response participating in power balance[J]. Electric Power, 2022, 55(10): 170–177 [6] 丁一, 惠红勋, 林振智, 等. 面向电力需求侧主动响应的商业模式及市场框架设计[J]. 电力系统自动化, 2017, 41(14): 2–9, 189 DING Yi, HUI Hongxun, LIN Zhenzhi, et al. Design of business model and market framework oriented to active demand response of power demand side[J]. Automation of Electric Power Systems, 2017, 41(14): 2–9, 189 [7] 薛禹胜, 罗运虎, 李碧君, 等. 关于可中断负荷参与系统备用的评述[J]. 电力系统自动化, 2007, 31(10): 1–6 XUE Yusheng, LUO Yunhu, LI Bijun, et al. A review of interruptible load participating in system reserve[J]. Automation of Electric Power Systems, 2007, 31(10): 1–6 [8] 丁一, 吴华华, 惠红勋, 等. 适合需求侧主动响应的中国电力市场机制的思考与建议[J]. 南方电网技术, 2016, 10(3): 24–31, 3 DING Yi, WU Huahua, HUI Hongxun, et al. Analysis and related suggestions on power market mechanism of demand side response in China[J]. Southern Power System Technology, 2016, 10(3): 24–31, 3 [9] 陈灏, 田琳, 盛剑胜, 等. 考虑风险规避和需求响应的电力市场可再生能源综合交易决策研究[J]. 电力科学与技术学报, 2023, 38(1): 27–34 CHEN Hao, TIAN Lin, SHENG Jiansheng, et al. Research on comprehensive trading decision of renewable energy in power market considering the risk aversion and demand response[J]. Journal of Electric Power Science and Technology, 2023, 38(1): 27–34 [10] ALBADI M H, EL-SAADANY E F. A summary of demand response in electricity markets[J]. Electric Power Systems Research, 2008, 78(11): 1989–1996. [11] 党东升, 韩松, 周珏, 等. 需求响应参与系统调峰研究综述[J]. 电力需求侧管理, 2017, 19(5): 13–17 DANG Dongsheng, HAN Song, ZHOU Jue, et al. Review of demand response participating in power system peak shifting[J]. Power Demand Side Management, 2017, 19(5): 13–17 [12] 张钦, 王锡凡, 王建学, 等. 电力市场下需求响应研究综述[J]. 电力系统自动化, 2008, 32(3): 97–106 ZHANG Qin, WANG Xifan, WANG Jianxue, et al. Survey of demand response research in deregulated electricity markets[J]. Automation of Electric Power Systems, 2008, 32(3): 97–106 [13] 陈爱博, 王存旭. 需求响应对电力市场的效益影响研究综述[J]. 沈阳工程学院学报(自然科学版), 2019, 15(4): 338–342 CHEN Aibo, WANG Cunxu. Review on the effect of demand response on power market efficiency[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2019, 15(4): 338–342 [14] 谭鸣骢, 王玲玲, 蒋传文, 等. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55(10): 32–44 TAN Mingcong, WANG Lingling, JIANG Chuanwen, et al. Bi-level optimization model of demand response considering regulation potential of load aggregator[J]. Electric Power, 2022, 55(10): 32–44 [15] The Tsinghua University Building Energy Research Center. The future of cooling in China delivering on action plans for sustainable air conditioning[R]. 2019. [16] 杨梓俊, 丁小叶, 陆晓, 等. 面向需求响应的变频空调负荷建模与运行控制[J]. 电力系统保护与控制, 2021, 49(15): 132–140 YANG Zijun, DING Xiaoye, LU Xiao, et al. Inverter air conditioner load modeling and operational control for demand response[J]. Power System Protection and Control, 2021, 49(15): 132–140 [17] HUI H X, DING Y, LIU W D, et al. Operating reserve evaluation of aggregated air conditioners[J]. Applied Energy, 2017, 196: 218–228. [18] ZHANG W, LIAN J M, CHANG C Y, et al. Aggregated modeling and control of air conditioning loads for demand response[C]//2014 IEEE PES General Meeting | Conference & Exposition. National Harbor, MD, USA. IEEE, 2014: 1. [19] LI Y L, DE LA REE J, GONG Y F. The smart thermostat of HVAC systems based on PMV-PPD model for energy efficiency and demand response[C]//2018 2 nd IEEE Conference on Energy Internet and Energy System Integration (EI2). Beijing, China. IEEE, 2018: 1–6. [20] YOON J H, BALDICK R, NOVOSELAC A. Dynamic demand response controller based on real-time retail price for residential buildings[J]. IEEE Transactions on Smart Grid, 2014, 5(1): 121–129. [21] HU M M, XIAO F. Investigation of the demand response potentials of residential air conditioners using grey-box room thermal model[J]. Energy Procedia, 2017, 105: 2759–2765. [22] GARULLI A, PAOLETTI S, VICINO A. Models and techniques for electric load forecasting in the presence of demand response[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1087–1097. [23] 王婷, 刘潇, 武媚, 等. 大规模空调负荷聚合建模及跟踪控制方案研究[J]. 电力需求侧管理, 2020, 22(6): 51–56 WANG Ting, LIU Xiao, WU Mei, et al. Research on load aggregation modeling and tracking control scheme for large scale air conditioning[J]. Power Demand Side Management, 2020, 22(6): 51–56 [24] 漆淘懿, 惠红勋, 徐立中, 等. 基于 GridLAB-D 的微电网广义需求响应建模与控制[J]. 供用电, 2020, 37(7): 3–10 QI Taoyi, HUI Hongxun, XU Lizhong, et al. Modeling and control of generalized demand response in micro-grids based on GridLAB-D[J]. Distribution & Utilization, 2020, 37(7): 3–10 [25] VALERO S, ORTIZ M, SENABRE C, et al. Methods for customer and demand response policies selection in new electricity markets[J]. IET Generation, Transmission & Distribution, 2007, 1(1): 104. [26] BASHASH S, FATHY H K. Modeling and control of aggregate air conditioning loads for robust renewable power management[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1318–1327. [27] TANG R, WANG S W, YAN C C. A direct load control strategy of centralized air-conditioning systems for building fast demand response to urgent requests of smart grids[J]. Automation in Construction, 2018, 87: 74–83. [28] XUE X, WANG S W, SUN Y J, et al. An interactive building power demand management strategy for facilitating smart grid optimization[J]. Applied Energy, 2014, 116: 297–310. [29] XIE D J, HUI H X, DING Y, et al. Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals[J]. Applied Energy, 2018, 216: 338–347. [30] ULMEANU A P, BARBU V S, TANASIEV V, et al. Hidden Markov models revealing the household thermal profiling from smart meter data[J]. Energy and Buildings, 2017, 154: 127–140. [31] ERICKSON V L, CERPA A E. Occupancy based demand response HVAC control strategy[C]//Proceedings of the 2 nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building. Zurich, Switzerland. New York: ACM, 2010: 7–12. [32] DE DEAR R J, BRAGER G S. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55[J]. Energy and Buildings, 2002, 34(6): 549–561. [33] ALBERT A, RAJAGOPAL R. Thermal profiling of residential energy use[J]. IEEE Transactions on Power Systems, 2015, 30(2): 602–611. [34] QI N, CHENG L, XU H L, et al. Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads[J]. Applied Energy, 2020, 279: 115708. [35] OLIVIERI S J, HENZE G P, CORBIN C D, et al. Evaluation of commercial building demand response potential using optimal short-term curtailment of heating, ventilation, and air-conditioning loads[J]. Journal of Building Performance Simulation, 2014, 7(2): 100–118. [36] GILS H C. Assessment of the theoretical demand response potential in Europe[J]. Energy, 2014, 67: 1–18. [37] XIANG R, LUO M, ZHOU S L, et al. Demand response potential assessment for energy-intensive enterprises based on clustering with dimensionality reduction[C]//2022 China International Conference on Electricity Distribution (CICED). Changsha, China. IEEE, 2022: 83–86. [38] LIU J H, YANG M, DENG F Z, et al. Evaluation of adjustable load potential of industrial and commercial users based on power demand response[J]. IOP Conference Series:Earth and Environmental Science, 2021, 769(4): 042058. [39] ALBADI M H, EL-SAADANY E F. Demand response in electricity markets: an overview[C]//2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA. IEEE, 2007: 1–5. [40] 程林, 万宇翔, 张放, 等. 基于负荷聚合商业务的空调服务运作模式及控制策略[J]. 电力系统自动化, 2018, 42(18): 8–16 CHENG Lin, WAN Yuxiang, ZHANG Fang, et al. Operation mode and control strategy for air-conditioning service based on business of load aggregator[J]. Automation of Electric Power Systems, 2018, 42(18): 8–16 [41] 辛洁晴, 吴亮. 商务楼中央空调周期性暂停分档控制策略[J]. 电力系统自动化, 2013, 37(5): 49–54 XIN Jieqing, WU Liang. Hierarchical strategies for duty cycling control of air conditioners in business buildings[J]. Automation of Electric Power Systems, 2013, 37(5): 49–54 [42] HUI H X, DING Y, SONG Y H, et al. Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error[J]. Applied Energy, 2019, 250: 161–174. [43] XIE K, HUI H X, DING Y, et al. Modeling and control of central air conditionings for providing regulation services for power systems[J]. Applied Energy, 2022, 315: 119035. [44] HAO H, CORBIN C D, KALSI K, et al. Transactive control of commercial buildings for demand response[J]. IEEE Transactions on Power Systems, 2016, 32(1): 774–783. [45] 赵力航, 常伟光, 杨敏, 等. 电力市场环境下虚拟电厂两阶段能量经济优化调度[J]. 中国电力, 2022, 55(10): 14–22 ZHAO Lihang, CHANG Weiguang, YANG Min, et al. Two-stage energy economic optimal dispatch of virtual power plant in deregulated electricity market[J]. Electric Power, 2022, 55(10): 14–22 [46] WAI C H, BEAUDIN M, ZAREIPOUR H, et al. Cooling devices in demand response: a comparison of control methods[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 249–260. [47] ABIRI-JAHROMI A, BOUFFARD F. Contingency-type reserve leveraged through aggregated thermostatically-controlled loads-part I: characterization and control[J]. IEEE Transactions on Power Systems, 2016, 31(3): 1972–1980. [48] HALBE S, CHOWDHURY B, ABBAS A. Mitigating rebound effect of demand response using battery energy storage and electric water heaters[C]//2019 IEEE 16 th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT). Charlotte, NC, USA. IEEE, 2019: 95–99. [49] CUI W Q, DING Y, HUI H X, et al. Evaluation and sequential dispatch of operating reserve provided by air conditioners considering lead-lag rebound effect[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6935–6950. [50] ZHOU X M, SANG M S, BAO M L, et al. Exploiting integrated demand response for operating reserve provision considering rebound effects[J]. IEEE Access, 2022, 10: 15151–15162. [51] LI W, XU P, YE Y. Case study of demand response in a large commercial building-a pilot program in Shanghai[C]//9th International Conference on Indoor Air Quality Ventilation & Energy Conservation Buildings. 2018: 1–6. [52] CHEN T, CUI Q S, GAO C W, et al. Optimal demand response strategy of commercial building-based virtual power plant using reinforcement learning[J]. IET Generation, Transmission & Distribution, 2021, 15(16): 2309–2318. [53] SHAN K, WANG S W, YAN C C, et al. Building demand response and control methods for smart grids: a review[J]. Science and Technology for the Built Environment, 2016, 22(6): 692–704. [54] 孔赟, 潘棋, 王蓓蓓, 等. 空调自动需求响应控制策略在美国商业建筑中的应用案例分析[J]. 电力需求侧管理, 2017, 19(1): 60–64 KONG Yun, PAN Qi, WANG Beibei et al. The performance analysis of automated demand response control strategies for air conditionings adopted in American commercial buildings[J]. Power Demand Side Management, 2017, 19(1): 60–64 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||