Electric Power ›› 2016, Vol. 49 ›› Issue (1): 1-13.DOI: 10.11930/j.issn.1004-9649.2016.01.001.13
• Special Contribution • Previous Articles Next Articles
YUE Guangxi1, LU Junfu1, XU Peng2, HU Xiukuai2, LING Wen3, CHEN Ying3, LI Jianfeng4
Received:
2015-11-12
Online:
2016-01-18
Published:
2016-02-04
CLC Number:
YUE Guangxi, LU Junfu, XU Peng, HU Xiukuai, LING Wen, CHEN Ying, LI Jianfeng. The Up-To-Date Development and Future of Circulating Fluidized Bed Combustion Technology[J]. Electric Power, 2016, 49(1): 1-13.
[1] 冯俊凯,岳光溪,吕俊复. 循环流化床燃烧锅炉[M]. 北京:电力工业出版社,2003. [2] 徐旭常,吕俊复,张海. 燃烧理论与燃烧设备[M]. 北京:科学出版社,2012. [3] 李斌,李建锋,吕俊复,等. 我国大型循环流化床锅炉机组运行现状[J]. 锅炉技术,2012,43(1):22-28. LI Bin, LI Jianfeng, LU Junfu, et al. Status of large scale circulating fluidized bed boiler operation in China[J]. Boiler Technology, 2012, 43(1): 22-28. [4] YUE G, LI Y, LIU Q, et al. The first pilot compact CFB boiler with water cooled separator in China[C]//Proceedings of the 14th International Conference on Fluidized Bed Combustion. Wancouwer: 1997: 497-506. [5] 吕俊复,吴恩旭. 国产循环流化床锅炉的现状和发展前景[C]// 中国电机工程学会热电专业委员会1993年学术会议论文集. 桂林,1993:152-159. [6] 杨海瑞,吕俊复,岳光溪. 循环流化床锅炉设计理论与设计数据的确定[J]. 动力工程,2006,26(1):42-48. YANG Hairui, LU Junfu, YUE Guangxi. Design theory of circulating fluidized bed boilers and determination of the design parameters [J]. Journal of Power Engineering, 2006, 26(1): 42-48. [7] YATES J G. Fundamentals of fluidized bed chemical process [M]. Butterworths, 1983. [8] YUE G, LU J, ZHANG H, et al. Design theory of circulating fluidized bed boilers[C]//Proc. of the 18th Inter. Conf. on FBC. Toronto: ASME, 2005: 135-146. [9] YANG H, YUE G, XIAO X, et al. 1D modeling on the material balance in CFB boiler[J]. Chemical Engineering Science, 2005, 60(20): 5603-5611. [10] YANG H, WIRSUM M, YUE G, et al. A 6-parameter model to predict ash formation in a CFB boiler[J]. Powder Technology, 2003, 134(1-2): 117-122. [11] 吕俊复,杨海瑞,张建胜,等. 流化床燃烧煤的成灰磨耗特性[J]. 燃烧科学与技术,2003,9(1):1-15. LU Junfu, YANG Hairui, ZHANG Jiansheng, et al. Investigation on the ash size distribution and attrition during the coal combustion in fluidized bed[J]. Journal of Combustion Science and Technology, 2003, 9(1): 1-15. [12] 金晓钟,吕俊复,乔锐,等. 循环床锅炉燃烧份额分布的实验研究和理论分析[J]. 洁净煤技术,1999,5(1):26-29. JIN Xiaozhong, LU Junfu, QIAO Rui, et al. Experimental study and theory analysis on coal combustion fraction distribution in circulating fluidized bed combustor[J]. Clean Coal Technonlogy,1999, 5(1): 26-29. [13] 李竞岌,杨海瑞,吕俊复,等. 循环流化床锅炉超低氮氧化物排放的理论与实践[C]//中国动力工程学会锅炉专业委员会2015年学术交流会论文集. [14] LU J, JIN X, YUE G, et al. Gas concentration profiles in the furnace of large CFB boilers with water-cooled square separator [C]//Proceeding of the First International Conference of Engineering Thermalphysics. Beijing, 1999: 610-615. [15] GOLRIZ M, LECKNER B. Experimental studies of heat transfer in a circulating fluidized bed boiler [C]//Proc. Int. Conf. on Eng. Appl. of Mech. Teheran. Iran: Sharif University of Technology, 1992, (3): 167-174. [16] LINTS M C, GLICKSMAN L R. Parameters governing particle-to-wall heat transfer in a circulating fluidized bed[J]. AIChE Symp. Series 296, Fluid-particle Process: Fundamentals and Apllycations 1993, 89(35): 297-304. [17] GLICKSMAN L R. Circulating fluidized bed heat transfer[C]//Circulating Fluidized Bed Technology Ⅱ. Toronto: Pergamon Press, 1988: 13-21. [18] MONTAT D, ARHALIASS A, SCHMITT G. Heat transfer measurement and analysis in a 125 MWe circulating fluidized bed boiler [C]//Proc. of the 12th Inter. Conf. on FBC. New York: ASME Press, 1995: 1207-1214. [19] Werdermann. Heat transfer in large scale circulating fluidized bed combustors of different sizes[C]//Proc. of the Fourth Inter. Conf. on CFB Technology. New York: ASME, 1993. [20] WU R L, J R GRACE, C J LIM. A model for heat transfer in circulating fluidized beds[J]. Chemical Engineering Science, 1990, 45: 3389-3398. [21] ZHANG R, YANG H, LU J, et al. Theoretical and experimental analysis of bed-to-wall heat transfer in heat recovery processing [J]. Powder Technology, 2013, 249: 186-195. [22] JIN X, LU J, LI Y, et al. Experimental investigation on heat transfer in industrial-scale circulating fluidized bed boilers [C]//Proc. of the 6th Inter. Conf. on CFB Technology. Weirsberg, 1999: 356-361. [23] WANG Y, LU J, YANG H, et al. Measurement of heat transfer in a 465 t/h circulating fluidized bed boiler[C]//Proceeding of the 18th International Conference on Fluidized Bed Combustion. Toronto: ASME, 2005: 327-335. [24] ZHANG P, LU J, YANG H, et al. Heat transfer coefficient distribution in the furnace of a 300 MWe CFB boiler[C]//Proceedings of the 20th International Conference on Fluidized Bed Combustion. Xi’an, Beijing: Springer Press. 2009: 167-171. [25] LU J, ZHANG J, YUE G, et al. Heat transfer coefficient calculation method of the heater in the circulating fluidized bed furnace [J]. Heat Transfer-Asia Research, 2002, 31(7): 540-550. [26] 李建锋,郝继红,吕俊复,等. 中国300 MWe级循环流化床锅炉机组运行现状分析[J]. 锅炉技术,2010,41(5):37-41,47. LI Jianfeng, HAO Jihong, LU Junfu, et al. Status of 300 MWe circulating fluidized bed boiler operation in China[J]. Boiler Technology, 2010, 41(5): 37-41, 47. [27] GUO Q, ZHENG X, ZHOU Q, et al. Operation experience and performance of the first 300 MWe CFB boiler developed by DBC in China[C]//Proceedings of the 20th International Conference on Fluidized Bed Combustion. Beijing: Springer Press, 2009: 237-242. [28] 辛建,吕俊复,岳光溪,等. 发展超临界循环流化床的讨论[J]. 热能动力工程,2002,17:439-441. XIN Jian, LU Junfu, YUE Guangxi, et al. A discussion concerning the development of supercritical circulating fluidized beds[J]. Journal of Engineering for Thermal Energy & Power, 2002, 17(5):439-441. [29] HU N, ZHANG H, YANG H, et al. Effects of riser height and total solids inventory on the gas-solids in an ultra-tall CFB riser [J]. Powder Technology, 2009, 196(1): 8-13. [30] WU Y, LUE J, ZHANG J, et al. Heat flux and hydrodynamics of the membrane wall of supercritical pressure circulating fluidized bed boiler [C]. ISMF05, July 3-8, 2005: 149. [31] YUE G, LING W, LU J, et al. Development and demonstration of the 600 MW supercritical CFB boiler in baima power plant [C]// Proceedings of 22nd FBC. Turku, Finland, 2015. [32] GAO M, LIU J, YUE G, et al. Investigation on load control of a 600 MW supercritical circulating fluidized bed boiler[C]// Proceedings of the 11th International Conference on Fluidized Bed Technology. 2014: 711-719. [33] YUE G, LU J, YANG H, et al. Research on supercritical circulating fluidized bed boiler[C]//Proceedings of the 11th International Conference on Fluidized Bed Technology. 2014: 541-550. [34] LI Y, LI W, WU Y, et al. Numerical calculation of heat transfer distribution in a 600 MWe supercritical circulating fluidized bed boiler[C]//Proceedings of the 20th International Conference on Fluidized Bed Combustion. Beijing: Springer Press. 2009: 786-791. [35] 于龙,吕俊复,王智微,等. 循环流化床燃烧技术的研究展望[J]. 热能动力工程,2004,19(4):336-341. YU Long, LU Junfu, WANG Zhiwei, et al. Prospective research progress of combustion technology for circulating fluidized beds[J]. Journal of Engineering for Thermal Energy & Power, 2004, 19(4): 336-342. [36] YANG H, ZHANG H, LU J, et al. Novel CFB boiler technology with reconstruction of its fluidization state[C]//Proceedings of the 20th International Conference on Fluidized Bed Combustion. Beijing: Springer Press. 2009: 195-199. [37] YANG H, YUE G, ZHANG Hai, et al. Updated design and operation experience of CFB boilers with energy saving process in China [J]. VGB PowerTech, 2011, 91(7): 49-53. [38] 杨石,杨海瑞,吕俊复,等. 新一代节能型循环流化床锅炉燃烧技术[J]. 动力工程,2009,29(8):728-732. YANG Shi, YANG Hairui, LU Junfu, et al. The new generation combustion technology for energy saving circulating fluidized bed boilers [J]. Journal of Power Engineering, 2009, 29(8): 728-732. [39] SU J, HU N. Application of fluidization reconstruction energy- saving combustion technology on 300 MW CFB boiler [J]. Advanced Materials Research, 2012, 516-517: 140-145. [40] LI J, YANG H, WU Y, et al. Effects of the updated National Emission Regulation in China on circulating fluidized bed boilers and the solutions to meet them [J]. Environmental Science & Technology, 2013, 47: 6681-6687. [41] JIN X, LU J, YANG H, et al. Comprehensive mathematical model for coal combustion in the circulating fluidized bed combustor [J]. Tsinghua Science and Technology, 2010, 6(4): 319-325. [42] 张楚,林郁郁,章明川. 快速床动力学统一模型Ⅱ:上部稀相与下部浓相固含率的预报[J]. 工程热物理学报,2012,33(4): 694-698. ZHANG Chu, LI Yuyu, ZHANG Mingchuan. A unified model for fast fluidization dynamics-Part II: Prediction of upside dilute phase holdup and lower dense phase holdup[J]. Journal of Engineering Thermophysics, 2012, 33(4): 694-698. [43] 刘向军,赵燕,徐旭常. 循环流化床内煤粉颗粒团燃烧行为理论分析[J]. 中国电机工程学报,2006,26(1):30-34. LIU Xiangjun, ZHAO Yan, XU Xuchang. Theoretically studies of the coal particle cluster combustion behavior in a circulating fluidized bed [J]. Proceedings of the CSEE, 2006, 26(1): 30-34. [44] ?MAND L E, LECKNER B. Oxidation of volatile nitrogen compounds during combustion in circulating fluidized bed boilers [J]. Energy & Fuels, 1991, 5: 809-815. [45] GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems [J]. Progress in Energy and Combustion Science, 2003, 29(2): 89-113. [46] 李竞岌,杨海瑞,吕俊复,等. 节能型循环流化床锅炉低氮氧化物排放的分析[J]. 燃烧科学与技术,2013,19(4):293-298. LI Jingji, YANG Hairui, Lü Junfu, et al. Low NOx emission characteristic of low energy consumption CFB boilers[J]. Journal of Combustion Science and Technology, 2013, 19(4): 293-298. [47] 孙献斌,时正海,金森旺. 循环流化床锅炉超低排放技术研究[J]. 中国电力,2014,47(1):142-145. SUN Xianbin, SHI Zhenghai, JIN Senwang. Research on ultra-low emission technology for CFB boilers[J]. Electric Power, 2014, 47(1): 142-145. |
[1] | Li FENG, Lianmei ZHANG, Jiajia WEI, Changhong DENG, Guo LI, Jiayue YIN. Development & Thinking of Offshore Wind Power Based on Life Cycle Economic Evaluation [J]. Electric Power, 2024, 57(9): 80-93. |
[2] | Lei YANG, Lianming HUN, Guoqiang ZU, Shujun LI, Xinda LI, Junlong GUO, Yutao ZHANG. Development Status and Standardization of Electric Vehicle Charging Robots [J]. Electric Power, 2024, 57(4): 89-99. |
[3] | Junjie KANG, Chunyang ZHAO, Guopeng ZHOU, Liang ZHAO. A Layout Evaluation Method for Source-Network-Load-Storage and Multi-energy Complementary Projects Based on Entropy Weight and Delphi Method [J]. Electric Power, 2024, 57(12): 120-131. |
[4] | Zongchao YU, Ming WEN, Xianghua LI, Xintao XIE, Hongming YANG. Effective Development and Management Strategy for Distributed Smart Grids Based on Collective Intelligence [J]. Electric Power, 2024, 57(10): 57-68. |
[5] | REN Dawei, HOU Jinming, XIAO Jinyu, JIN Chen, WU Jiawei. Research on Development Potential and Path of New Energy Storage Supporting Carbon Peak and Carbon Neutrality [J]. Electric Power, 2023, 56(8): 17-25. |
[6] | QU Litao, QI Xiaohui, WANG Dexin, YU Honghai. Analysis of Air Pollutant Emission Characteristics of Ultra-low Emission Coal-Fired Units Based on CEMS Data [J]. Electric Power, 2023, 56(2): 171-178. |
[7] | Guoguang ZHENG. Problem Identification and Key Measures to Support the Achievement of Carbon Peak and Carbon Neutrality [J]. Electric Power, 2023, 56(11): 1-8. |
[8] | AI Xin, HU Huanyu, REN Dapeng, PENG Dong, LIU Huichuan, XUE Yawei, ZHANG Tianqi. Improved Fuzzy Evaluation Model and Assessment of Power Grid Development Diagnosis [J]. Electric Power, 2022, 55(5): 66-75,165. |
[9] | MA Jinlong, SUN Yong, YE Xueshun. Planning Mechanism and Incentive Strategies of European Offshore Wind Power and Their Enlightenment [J]. Electric Power, 2022, 55(4): 1-11,92. |
[10] | LI Hongxia, ZHANG Xiangcheng, LI Fang, ZHANG Haining, LI Nan, MA Xue. Qinghai Energy Demand Forecasting and Development Strategy Research under the Background of Construction of Clean Energy Demonstration Province [J]. Electric Power, 2021, 54(7): 1-10,26. |
[11] | ZHENG Kuan, XU Zhicheng, LU Gang, ZHANG Fuqiang, FENG Junshu, ZHANG Jinfang. Coordinated Development Strategy for Nuclear Power and New Energy in the Evolution Process of Power System with High Penetration of New Energy [J]. Electric Power, 2021, 54(7): 27-35. |
[12] | ZHANG Yunzhou, DAI Hongcai, WU Xiaoyu, CHEN Rui, ZHANG Ning. Development Trends and Key Issues of China's Integrated Energy Services [J]. Electric Power, 2021, 54(2): 1-10. |
[13] | SHAN Baoguo, JI Xingpei, YAO Li, MA Jie, WU Chenrui, DUAN Jinhui. Evolving Tendency of Electric Supply and Demand Pattern under the Circumstances of High-Quality Energy Development [J]. Electric Power, 2021, 54(11): 1-9,18. |
[14] | WU Baoying, SHAO Chong, HUANG Yu, PAN Xudong. The Crux of Scientific Development of Wind and PV Power Lies in Overall Planning and Coordination [J]. Electric Power, 2020, 53(9): 1-7. |
[15] | ZHANG Xian, XIE Kai, ZHANG Shengnan, PANG Bo, TANG Honghai. Excessive Consumption Trading System for the Accommodation of Renewable Energies Based on Blockchain [J]. Electric Power, 2020, 53(9): 60-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||