| 1 |
岳永胜, 孙冬, 许爽, 等. 锂离子电池等效电路模型的研究进展[J]. 电池, 2023, 53 (6): 682- 686.
|
|
YUE Yongsheng, SUN Dong, XU Shuang, et al. Research progress in equivalent circuit model for Li-ion battery[J]. Battery Bimonthly, 2023, 53 (6): 682- 686.
|
| 2 |
朱沐雨, 马宏忠, 郭鹏宇, 等. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57 (6): 18- 26.
|
|
ZHU Muyu, MA Hongzhong, GUO Pengyu, et al. State of charge estimation of energy storage battery pack under typical peak/frequency modulation conditions[J]. Electric Power, 2024, 57 (6): 18- 26.
|
| 3 |
陈来恩, 曾小勇, 曾子豪, 等. 基于物理信息与深度神经网络的锂离子电池温度预测[J]. 中国电力, 2024, 57 (11): 18- 25.
|
|
CHEN Laien, ZENG Xiaoyong, ZENG Zihao, et al. Temperature prediction of lithium-ion batteries based on physical information and deep neural network[J]. Electric Power, 2024, 57 (11): 18- 25.
|
| 4 |
邹国发, 高祥, 王春. 考虑锂电池多时间尺度效应的参数辨识与SOC估计方法[J]. 电力系统保护与控制, 2024, 52 (21): 71- 80.
|
|
ZOU Guofa, GAO Xiang, WANG Chun. Parameter identification and SOC estimation methods considering multi-timescale effect lithium batteries[J]. Power System Protection and Control, 2024, 52 (21): 71- 80.
|
| 5 |
邹红波, 柴延辉, 杨钦贺, 等. 基于混合ISSA-LSTM的锂离子电池剩余使用寿命预测[J]. 电力系统保护与控制, 2023, 51 (19): 21- 31.
|
|
ZOU Hongbo, CHAI Yanhui, YANG Qinhe, et al. Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM[J]. Power System Protection and Control, 2023, 51 (19): 21- 31.
|
| 6 |
岳家辉, 夏向阳, 蒋戴宇, 等. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56 (7): 163- 174.
|
|
YUE Jiahui, XIA Xiangyang, JIANG Daiyu, et al. Remaining useful life prediction and state of health estimation of lithium-ion batteries based on voltage data segment hybrid model[J]. Electric Power, 2023, 56 (7): 163- 174.
|
| 7 |
郭向伟, 邢程, 司阳, 等. RLS锂电池全工况自适应等效电路模型[J]. 电工技术学报, 2022, 37 (16): 4029- 4037.
|
|
GUO Xiangwei, XING Cheng, SI Yang, et al. RLS adaptive equivalent circuit model of lithium battery under full working condition[J]. Transactions of China Electrotechnical Society, 2022, 37 (16): 4029- 4037.
|
| 8 |
CHEN Z W, YANG L W, ZHAO X B, et al. Online state of charge estimation of Li-ion battery based on an improved unscented Kalman filter approach[J]. Applied Mathematical Modelling, 2019, 70, 532- 544.
|
| 9 |
HE L, WANG Y Y, WEI Y J, et al. An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery[J]. Energy, 2022, 244, 122627.
|
| 10 |
XIA B Z, HUANG R, LAO Z Z, et al. Online parameter identification of lithium-ion batteries using a novel multiple forgetting factor recursive least square algorithm[J]. Energies, 2018, 11 (11): 3180.
|
| 11 |
范兴明, 封浩, 张鑫. 最小二乘算法优化及其在锂离子电池参数辨识中的应用[J]. 电工技术学报, 2024, 39 (5): 1577- 1588.
|
|
FAN Xingming, FENG Hao, ZHANG Xin. Optimization of least squares method and its application in parameter identification of lithium-ion battery model[J]. Transactions of China Electrotechnical Society, 2024, 39 (5): 1577- 1588.
|
| 12 |
谢文超, 赵延明, 方紫微, 等. 带可变遗忘因子递推最小二乘法的超级电容模组等效模型参数辨识方法[J]. 电工技术学报, 2021, 36 (5): 996- 1005.
|
|
XIE Wenchao, ZHAO Yanming, FANG Ziwei, et al. Variable forgetting factor recursive least squales based parameter identification method for the equivalent circuit model of the supercapacitor cell module[J]. Transactions of China Electrotechnical Society, 2021, 36 (5): 996- 1005.
|
| 13 |
严干贵, 李洪波, 段双明, 等. 基于模型参数辨识的储能电池状态估算[J]. 中国电机工程学报, 2020, 40 (24): 8145- 8154, 8251.
|
|
YAN Gangui, LI Hongbo, DUAN Shuangming, et al. Energy storage battery state estimation based on model parameter identification[J]. Proceedings of the CSEE, 2020, 40 (24): 8145- 8154, 8251.
|
| 14 |
GUO P, MA W T, YI D L, et al. Enhanced square root CKF with mixture correntropy loss for robust state of charge estimation of lithium-ion battery[J]. Journal of Energy Storage, 2023, 73, 108920.
|
| 15 |
ZHU Q, XU M E, ZHENG M Q. Iterative learning based model identification and state of charge estimation of lithium-ion battery[C]//2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Enshi, China. IEEE, 2018: 222–228.
|
| 16 |
王世繁, 董亮, 罗杨, 等. 基于极大似然准则UKF的锂电池SOC估算研究[J]. 自动化与仪器仪表, 2018, (3): 76- 80.
|
|
WANG Shifan, DONG Liang, LUO Yang, et al. Based on maximum likelihood principle UKF for SOC estimation of lithium battery[J]. Automation & Instrumentation, 2018, (3): 76- 80.
|
| 17 |
刘世林, 李德俊, 姚伟, 等. 基于核极限学习机与容积卡尔曼滤波融合的锂电池荷电状态估计[J]. 湖南大学学报(自然科学版), 2023, 50 (10): 51- 59.
|
|
LIU Shilin, LI Dejun, YAO Wei, et al. Estimation on state of charge of lithium battery based on fusion of kernel extreme learning machine and cubature Kalman filter[J]. Journal of Hunan University (Natural Sciences), 2023, 50 (10): 51- 59.
|
| 18 |
宫明辉, 乌江, 焦朝勇. 基于模糊自适应扩展卡尔曼滤波器的锂电池SOC估算方法[J]. 电工技术学报, 2020, 35 (18): 3972- 3978.
|
|
GONG Minghui, WU Jiang, JIAO Chaoyong. SOC estimation method of lithium battery based on fuzzy adaptive extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35 (18): 3972- 3978.
|
| 19 |
远翔宇, 杨风暴, 杨童瑶. 基于自适应蜣螂算法的无人机三维路径规划方法[J]. 无线电工程, 2024, 54(4): 928-936.
|
|
YUAN Xiangyu, YANG Fengbao, YANG Tongyao. UAV 3D path planning method based on adaptive dung beetle algorithm[J]. Radio Engineering, 2023, 53(05), 1121-1128.
|
| 20 |
易望远. 数控铣削能耗预测及切削参数多目标优化研究[J]. 重庆理工大学学报(自然科学), 2023, 37 (7): 256- 264.
|
|
YI Wangyuan. Research on energy consumption prediction and multi-objective optimization of cutting parameters in CNC milling[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37 (7): 256- 264.
|
| 21 |
XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79 (7): 7305- 7336.
|