Electric Power ›› 2024, Vol. 57 ›› Issue (5): 2-13.DOI: 10.11930/j.issn.1004-9649.202306096
• Flexible Resource Operation and Key Technologies of New Power System Source Network Load Storage • Previous Articles Next Articles
Funian HU(), Pengcheng ZHANG(
), Xiaobo ZHOU(
), Jun CHEN(
)
Received:
2023-06-26
Accepted:
2023-09-24
Online:
2024-05-23
Published:
2024-05-28
Supported by:
Funian HU, Pengcheng ZHANG, Xiaobo ZHOU, Jun CHEN. Coordinated Optimal Scheduling of Source and Load in Integrated Energy System Considering Flexible Resources[J]. Electric Power, 2024, 57(5): 2-13.
设备 类型 | kW | kW | 爬坡 约束/% | 维护成本/ (元•kW–1) | ||||
风电 | 0 | 1 000 | 20 | 0.0196 | ||||
光伏 | 0 | 1 000 | 20 | 0.0235 | ||||
CHP机组 | 0 | 600 | 20 | 0.0250 | ||||
电解槽装置 | 0 | 500 | 20 | 0.0280 | ||||
甲烷反应器 | 0 | 250 | 20 | 0.0280 | ||||
氢燃料电池 | 0 | 250 | 20 | 0.0260 |
Table 1 Operating parameters of units
设备 类型 | kW | kW | 爬坡 约束/% | 维护成本/ (元•kW–1) | ||||
风电 | 0 | 1 000 | 20 | 0.0196 | ||||
光伏 | 0 | 1 000 | 20 | 0.0235 | ||||
CHP机组 | 0 | 600 | 20 | 0.0250 | ||||
电解槽装置 | 0 | 500 | 20 | 0.0280 | ||||
甲烷反应器 | 0 | 250 | 20 | 0.0280 | ||||
氢燃料电池 | 0 | 250 | 20 | 0.0260 |
参数 | 电储能 | 热储能 | 氢储能 | |||
容量/(kW·h) | 450 | 500 | 200 | |||
充放效率 | 0.9 | 0.9 | 0.9 | |||
初始容量/(kW·h) | 135 | 150 | 60 | |||
维护成本/(元•kW–1) | 0.0018 | 0.0016 | 0.0018 |
Table 2 Parameters of energy storage facilities
参数 | 电储能 | 热储能 | 氢储能 | |||
容量/(kW·h) | 450 | 500 | 200 | |||
充放效率 | 0.9 | 0.9 | 0.9 | |||
初始容量/(kW·h) | 135 | 150 | 60 | |||
维护成本/(元•kW–1) | 0.0018 | 0.0016 | 0.0018 |
参数 | 上级 电网 | 蓄电池 | CHP机组 | HFC | IDR | |||||
上调灵活性供给 | 1 920.0 | 2 829.8 | 1 042.0 | 1 250.0 | 1 357.6 | |||||
下调灵活性供给 | 633.6 | 1 929.6 | 2 845.4 | 1 200.0 | 1 282.4 |
Table 3 The supply capacity of different flexibility resources 单位:kW
参数 | 上级 电网 | 蓄电池 | CHP机组 | HFC | IDR | |||||
上调灵活性供给 | 1 920.0 | 2 829.8 | 1 042.0 | 1 250.0 | 1 357.6 | |||||
下调灵活性供给 | 633.6 | 1 929.6 | 2 845.4 | 1 200.0 | 1 282.4 |
项目 | 方案1 | 方案2 | 方案3 | 方案4 | ||||
购能成本/元 | 8 556.8 | 8 609.8 | 8 644.3 | 8 746.5 | ||||
运维成本/元 | 1 167.1 | 1 159.6 | 1 158.2 | 1 152.6 | ||||
弃风弃光成本/元 | 0 | 0 | 0 | 0 | ||||
需求响应成本/元 | 306.6 | 288.2 | 279.2 | 363.0 | ||||
综合成本/元 | 10 030.5 | 10 057.6 | 10 081.7 | 10 262.1 | ||||
灵活性缺额/kW | 455 | 0 | 0 | 0 | ||||
灵活性裕度/kW | 5 284.3 | 5 763.9 | 5 074.7 | 2 404.9 |
Table 4 Comprehensive cost comparison of different schemes
项目 | 方案1 | 方案2 | 方案3 | 方案4 | ||||
购能成本/元 | 8 556.8 | 8 609.8 | 8 644.3 | 8 746.5 | ||||
运维成本/元 | 1 167.1 | 1 159.6 | 1 158.2 | 1 152.6 | ||||
弃风弃光成本/元 | 0 | 0 | 0 | 0 | ||||
需求响应成本/元 | 306.6 | 288.2 | 279.2 | 363.0 | ||||
综合成本/元 | 10 030.5 | 10 057.6 | 10 081.7 | 10 262.1 | ||||
灵活性缺额/kW | 455 | 0 | 0 | 0 | ||||
灵活性裕度/kW | 5 284.3 | 5 763.9 | 5 074.7 | 2 404.9 |
1 | 张高航, 李凤婷. 计及运行风险和备用可用性的含风电系统两阶段优化调度[J]. 电力系统保护与控制, 2022, 50 (11): 139- 148. |
ZHANG Gaohang, LI Fengting. Two-stage optimal dispatch for wind power integrated power system considering operational risk and reserve availability[J]. Power System Protection and Control, 2022, 50 (11): 139- 148. | |
2 |
韩自奋, 景乾明, 张彦凯, 等. 风电预测方法与新趋势综述[J]. 电力系统保护与控制, 2019, 47 (24): 178- 187.
DOI |
HAN Zifen, JING Qianming, ZHANG Yankai, et al. Review of wind power forecasting methods and new trends[J]. Power System Protection and Control, 2019, 47 (24): 178- 187.
DOI |
|
3 |
陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41 (9): 48- 55.
DOI |
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41 (9): 48- 55.
DOI |
|
4 | 鲁宗相, 林弋莎, 乔颖, 等. 极高比例可再生能源电力系统的灵活性供需平衡[J]. 电力系统自动化, 2022, 46 (16): 3- 16. |
LU Zongxiang, LIN Yisha, QIAO Ying, et al. Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46 (16): 3- 16. | |
5 | 黄鹏翔, 周云海, 徐飞, 等. 基于灵活性裕度的含风电电力系统源荷储协调滚动调度[J]. 中国电力, 2020, 53 (11): 78- 88. |
HUANG Pengxiang, ZHOU Yunhai, XU Fei, et al. Source-load-storage coordinated rolling dispatch for wind power integrated power system based on flexibility margin[J]. Electric Power, 2020, 53 (11): 78- 88. | |
6 |
苏承国, 申建建, 王沛霖, 等. 基于电源灵活性裕度的含风电电力系统多源协调调度方法[J]. 电力系统自动化, 2018, 42 (17): 111- 119.
DOI |
SU Chengguo, SHEN Jianjian, WANG Peilin, et al. Coordinated dispatching method for wind-turbine-integrated power system with multi-type power sources based on power flexibility margin[J]. Automation of Electric Power Systems, 2018, 42 (17): 111- 119.
DOI |
|
7 | 李茜, 苟璐旸, 李樊, 等. 面向提供系统灵活性的风电场内机组优化运行[J]. 中国电力, 2022, 55 (8): 23- 30. |
LI Qian, GOU Luyang, LI Fan, et al. System flexibility-oriented optimized unit operation in wind farms[J]. Electric Power, 2022, 55 (8): 23- 30. | |
8 |
胡福年, 徐伟成, 陈军. 计及电动汽车充电负荷的风电-光伏-光热联合系统协调调度[J]. 电力系统保护与控制, 2021, 49 (13): 10- 20.
DOI |
HU Funian, XU Weicheng, CHEN Jun. Coordinated scheduling of wind power photovoltaic solar thermal combined system considering electric vehicle charging load[J]. Power System Protection and Control, 2021, 49 (13): 10- 20.
DOI |
|
9 | 胥洪远, 龙太聪, 赵启道, 等. 考虑电转气消纳水电的水-电-气系统低碳鲁棒优化调度[J]. 中国电力, 2022, 55 (11): 163- 174. |
XU Hongyuan, LONG Taicong, ZHAO Qidao, et al. Day-ahead coordinated low carbon robust scheduling of hydro-electricity-natural gas system considering power-to-gas to accommodate excessive hydro generation[J]. Electric Power, 2022, 55 (11): 163- 174. | |
10 |
杨修宇, 孙健舒, 刘玉娇, 等. 气网管存与电转气协调运行提升电-气互联系统灵活性的调度策略[J]. 电网技术, 2023, 47 (1): 236- 247.
DOI |
YANG Xiuyu, SUN Jianshu, LIU Yujiao, et al. Scheduling strategy of coordinated operation of gas network linepack and P2G for flexibility improvement of integrated electricity-gas system[J]. Power System Technology, 2023, 47 (1): 236- 247.
DOI |
|
11 | CLEGG S, MANCARELLA P. Integrated electrical and gas network flexibility assessment in low-carbon multi-energy systems[C]//2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA, USA. IEEE, 2016. |
12 | 吉兴全, 刘健, 张玉敏, 等. 计及运行灵活性约束的综合能源系统优化调度[J]. 电力系统自动化, 2022, 46 (16): 84- 94. |
JI Xingquan, LIU Jian, ZHANG Yumin, et al. Optimal dispatching of integrated energy system considering operation flexibility constraints[J]. Automation of Electric Power Systems, 2022, 46 (16): 84- 94. | |
13 | 吉兴全, 张旋, 于一潇, 等. 考虑综合能源系统运行灵活性的输配协同优化调度[J]. 电力系统自动化, 2022, 46 (23): 29- 40. |
JI Xingquan, ZHANG Xuan, YU Yixiao, et al. Coordinated optimal dispatch of transmission and distribution power systems considering operation flexibility of integrated energy system[J]. Automation of Electric Power Systems, 2022, 46 (23): 29- 40. | |
14 |
汤翔鹰, 胡炎, 耿琪, 等. 考虑多能灵活性的综合能源系统多时间尺度优化调度[J]. 电力系统自动化, 2021, 45 (4): 81- 90.
DOI |
TANG Xiangying, HU Yan, GENG Qi, et al. Multi-time-scale optimal scheduling of integrated energy system considering multi-energy flexibility[J]. Automation of Electric Power Systems, 2021, 45 (4): 81- 90.
DOI |
|
15 | 胡俊杰, 童宇轩, 刘雪涛, 等. 计及精细化氢能利用的综合能源系统多时间尺度鲁棒优化策略[J/OL]. 电工技术学报: 1–18[2023-06-16].https://doi.org/10.19595/j.cnki.1000-6753.tces.222335. |
HU Junjie, TONG Yuxuan, LIU Xuetao, et al. Multi-time-scale robust optimization strategy for integrated energy system considering the refinement of hydrogen energy use[J/OL]. Transactions of China Electrotechnical Society: 1–18[2023-06-16]. DOI:10.19595/j.cnki.1000-6753.tces.222335. | |
16 | 荆涛, 陈庚, 王子豪, 等. 风光互补发电耦合氢储能系统研究综述[J]. 中国电力, 2022, 55 (1): 75- 83. |
JING Tao, CHEN Geng, WANG Zihao, et al. Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric Power, 2022, 55 (1): 75- 83. | |
17 |
王雪纯, 陈红坤, 陈磊. 提升区域综合能源系统运行灵活性的多主体互动决策模型[J]. 电工技术学报, 2021, 36 (11): 2207- 2219.
DOI |
WANG Xuechun, CHEN Hongkun, CHEN Lei. Multi-player interactive decision-making model for operational flexibility improvement of regional integrated energy system[J]. Transactions of China Electrotechnical Society, 2021, 36 (11): 2207- 2219.
DOI |
|
18 | 胡福年, 徐伟成, 陈军. 含可再生能源与CAES电站的电热综合能源系统调度策略[J]. 中国电力, 2022, 55 (11): 129- 141. |
HU Funian, XU Weicheng, CHEN Jun. Dispatching strategy for integrated electric and heating energy system including renewable energy and CAES power station[J]. Electric Power, 2022, 55 (11): 129- 141. | |
19 |
TANG J, DING M, LU S, et al. Operational flexibility constrained intraday rolling dispatch strategy for CHP microgrid[J]. IEEE Access, 2019, 7, 96639- 96649.
DOI |
20 |
WANG J W, YOU S, ZONG Y, et al. Flexibility of combined heat and power plants: a review of technologies and operation strategies[J]. Applied Energy, 2019, 252, 113445.
DOI |
21 |
GE P D, HU Q R, WU Q W, et al. Increasing operational flexibility of integrated energy systems by introducing power to hydrogen[J]. IET Renewable Power Generation, 2020, 14 (3): 372- 380.
DOI |
22 | 邱玥, 陆帅, 陆海, 等. 综合能源系统灵活性: 基本内涵、数学模型与研究框架[J]. 电力系统自动化, 2022, 46 (17): 16- 43. |
QIU Yue, LU Shuai, LU Hai, et al. Flexibility of integrated energy system: basic connotation, mathematical model and research framework[J]. Automation of Electric Power Systems, 2022, 46 (17): 16- 43. | |
23 | 赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J]. 中国电机工程学报, 2022, 42 (2): 573- 589. |
ZHAO Haipeng, MIAO Shihong, LI Chao, et al. Research on optimal operation strategy for park-level integrated energy system considering cold-heat-electric demand coupling response characteristics[J]. Proceedings of the CSEE, 2022, 42 (2): 573- 589. | |
24 | 盛四清, 张佳欣, 李然, 等. 考虑综合需求响应的综合能源系统多能协同优化调度[J]. 电力自动化设备, 2023, 43 (6): 1- 9. |
SHENG Siqing, ZHANG Jiaxin, LI Ran, et al. Multi-energy collaborative optimization scheduling of integrated energy system considering integrated demand response[J]. Electric Power Automation Equipment, 2023, 43 (6): 1- 9. | |
25 |
孙毅, 胡亚杰, 郑顺林, 等. 考虑用户响应特性的综合需求响应优化激励策略[J]. 中国电机工程学报, 2022, 42 (4): 1402- 1413.
DOI |
SUN Yi, HU Yajie, ZHENG Shunlin, et al. Integrated demand response optimization incentive strategy considering users' response characteristics[J]. Proceedings of the CSEE, 2022, 42 (4): 1402- 1413.
DOI |
|
26 |
张高航, 李凤婷. 计及源荷储综合灵活性的电力系统日前优化调度[J]. 电力自动化设备, 2020, 40 (12): 159- 167.
DOI |
ZHANG Gaohang, LI Fengting. Day-ahead optimal scheduling of power system considering comprehensive flexibility of source-load-storage[J]. Electric Power Automation Equipment, 2020, 40 (12): 159- 167.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||