Electric Power ›› 2023, Vol. 56 ›› Issue (2): 68-76.DOI: 10.11930/j.issn.1004-9649.202107065
• Power System • Previous Articles Next Articles
ZHANG Shuxing1, MA Chi2, YANG Zhixue3, WANG Yao1, WU Hao1, REN Zhouyang3
Received:
2021-08-10
Revised:
2022-12-16
Accepted:
2021-11-08
Online:
2023-02-23
Published:
2023-02-28
Supported by:
ZHANG Shuxing, MA Chi, YANG Zhixue, WANG Yao, WU Hao, REN Zhouyang. Deep Deterministic Policy Gradient Algorithm Based Wind-Photovoltaic-Storage Hybrid System Joint Dispatch[J]. Electric Power, 2023, 56(2): 68-76.
[1] 水电水利规划设计总院. 中国可再生能源发展报告2020[R]. 北京: 水电水利规划设计总院, 2021. General Institute of Hydropower and Water Resources Planning and Design. China renewable energy development report 2020[R]. Beijing: General Institute of Hydropower and Water Resources Planning and Design, 2021. [2] 刘波, 郭家宝, 袁智强, 等. 风光储联合发电系统调度策略研究[J]. 华东电力, 2010, 38(12): 1897–1899 LIU Bo, GUO Jiabao, YUAN Zhiqiang, et al. Research on scheduling strategy of wind-PV-ES hybrid power system[J]. East China Electric Power, 2010, 38(12): 1897–1899 [3] 朱晔, 兰贞波, 隗震, 等. 考虑碳排放成本的风光储多能互补系统优化运行研究[J]. 电力系统保护与控制, 2019, 47(10): 127–133 ZHU Ye, LAN Zhenbo, WEI Zhen, et al. Research on optimal operation of wind-PV-ES complementary system considering carbon emission cost[J]. Power System Protection and Control, 2019, 47(10): 127–133 [4] CHEN L X, HUANG X, HE P L, et al. Energy management strategy of wind-photovoltaic-storage micro-grid system considering battery life[C]//2018 13 th World Congress on Intelligent Control and Automation (WCICA). Changsha, China. IEEE, 2019: 1769–1774. [5] 张海宁, 陶以彬, 梅惠, 等. 基于合作博弈的风光储集群协同优化调度模型[J]. 热力发电, 2021, 50(8): 87–94 ZHANG Haining, TAO Yibin, MEI Hui, et al. Collaborative optimal scheduling model of photovoltaic-wind-battery cluster based on cooperative game[J]. Thermal Power Generation, 2021, 50(8): 87–94 [6] 任洛卿, 白泽洋, 于昌海, 等. 风光储联合发电系统有功控制策略研究及工程应用[J]. 电力系统自动化, 2014, 38(7): 105–111 REN Luoqing, BAI Zeyang, YU Changhai, et al. Research on active power control strategy for wind/photovoltaic/energy storage hybrid power system and its engineering application[J]. Automation of Electric Power Systems, 2014, 38(7): 105–111 [7] 李华, 王思民, 高杰. 一种基于跟踪计划的风光储联合发电系统储能控制策略研究[J]. 电器与能效管理技术, 2019(4): 71–78 LI Hua, WANG Simin, GAO Jie. Research on energy storage control strategy of wind solar storage combined generation system based on tracking plan[J]. Electrical & Energy Management Technology, 2019(4): 71–78 [8] 赵书强, 刘大正, 谢宇琪, 等. 基于相关机会目标规划的风光储联合发电系统储能调度策略[J]. 电力系统自动化, 2015, 39(14): 30–36, 53 ZHAO Shuqiang, LIU Dazheng, XIE Yuqi, et al. Scheduling strategy of energy storage in wind-solar-battery hybrid power system based on dependent-chance goal programming[J]. Automation of Electric Power Systems, 2015, 39(14): 30–36, 53 [9] 李笑竹, 王维庆, 王海云, 等. 基于鲁棒优化的风光储联合发电系统储能配置策略[J]. 太阳能学报, 2020, 41(8): 67–78 LI Xiaozhu, WANG Weiqing, WANG Haiyun, et al. Energy storage allocation strategy of wind-solar-storage combined system based on robust optimization[J]. Acta Energiae Solaris Sinica, 2020, 41(8): 67–78 [10] CAO D, HU W H, ZHAO J B, et al. Reinforcement learning and its applications in modern power and energy systems: a review[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(6): 1029–1042. [11] 周庆锋, 王思淳, 李德鑫, 等. 基于DDPG的风电场动态参数智能校核知识学习模型[J]. 中国电力, 2022, 55(5): 32–38 ZHOU Qingfeng, WANG Sichun, LI Dexin, et al. A knowledge learning model for intelligent check of wind farm dynamic parameters based on DDPG[J]. Electric Power, 2022, 55(5): 32–38 [12] 戚永志, 刘玉田. 风光储联合系统输出功率滚动优化与实时控制[J]. 电工技术学报, 2014, 29(8): 265–273 QI Yongzhi, LIU Yutian. Output power rolling optimization and real-time control in wind-photovoltaic-storage hybrid system[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 265–273 [13] LI P, DARGAVILLE R, LIU F, et al. Data-based statistical property analyzing and storage sizing for hybrid renewable energy systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(11): 6996–7008. [14] 杨京渝, 严文交, 罗隆福, 等. 风储联合发电系统三站合一智能监控系统设计与实现[J]. 电力系统保护与控制, 2022, 50(17): 167–177 YANG Jingyu, YAN Wenjiao, LUO Longfu, et al. Design and implementation of an intelligent monitoring system for three-station integrated wind-storage power plants[J]. Power System Protection and Control, 2022, 50(17): 167–177 [15] 国家能源局西北监管局. 西北区域发电厂并网运行管理实施细则[R]. 西安: 国家能源局西北监管局, 2019. Northwest Regulatory Bureau of National Energy Administration. Implementation rules for grid connected operation and management of power plants in Northwest Region[R]. Xi'an: Northwest regulatory bureau of national energy administration, 2019. [16] 国家能源局华中监管局. 西北区域并网发电厂辅助服务管理实施细则[R]. 西安: 国家能源局西北监管局, 2019. Central China Regulatory Bureau of the State Energy Administration. Implementation rules for auxiliary service management of grid connected power plants in Northwest China[R]. Xi'an: Northwest regulatory bureau of the state energy administration, 2019. [17] 孙立钧, 顾雪平, 刘彤, 等. 一种基于深度强化学习算法的电网有功安全校正方法[J]. 电力系统保护与控制, 2022, 50(10): 114–122 SUN Lijun, GU Xueping, LIU Tong, et al. A deep reinforcement learning algorithm-based active safety correction method for power grids[J]. Power System Protection and Control, 2022, 50(10): 114–122 [18] 杨辉明, 雷勇. 基于改进马尔科夫链的风电日前不确定性建模方法[J]. 南方电网技术, 2021, 15(7): 54–60 YANG Huiming, LEI Yong. Day-ahead uncertainty simulation method of wind power based on improved Markov chain[J]. Southern Power System Technology, 2021, 15(7): 54–60 [19] 李咸善, 陈奥博, 程杉, 等. 基于生态博弈的含云储能微电网多智能体协调优化调度[J]. 中国电力, 2021, 54(7): 166–177 LI Xianshan, CHEN Aobo, CHENG Shan, et al. Multi-agent coordination and optimal dispatch of microgrid with CES based on ecological game[J]. Electric Power, 2021, 54(7): 166–177 [20] TANG Y H, HU W H, CAO D, et al. Artificial intelligence-aided minimum reactive power control for the DAB converter based on harmonic analysis method[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 9704–9710. [21] 杨朋朋, 王蓓蓓, 胥鹏, 等. 不完全信息下基于深度双Q网络的发电商三段式竞价策略[J]. 中国电力, 2021, 54(11): 47–58 YANG Pengpeng, WANG Beibei, XU Peng, et al. Three-stage bidding strategy of generation company based on double deep Q-network under incomplete information condition[J]. Electric Power, 2021, 54(11): 47–58 [22] 李豹, 吴云亮, 邓韦斯, 等. 基于Q学习的电网运行断面动态生成方法[J]. 电力科学与技术学报, 2021, 36(4): 116–123 LI Bao, WU Yunliang, DENG Weisi, et al. A novel dynamic detection approach for power system operation section based on Q-learning algorithm[J]. Journal of Electric Power Science and Technology, 2021, 36(4): 116–123 [23] LIANG Y C, GUO C L, DING Z H, et al. Agent-based modeling in electricity market using deep deterministic policy gradient algorithm[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4180–4192. [24] 李自若, 沈曦, 张亦兵, 等. 基于深度强化学习的智慧变电站网络异常检测方法[J]. 南方电网技术, 2021, 15(6): 98–105 LI Ziruo, SHEN Xi, ZHANG Yibing, et al. Network anomaly detection method for smart substation based on deep reinforcement learning[J]. Southern Power System Technology, 2021, 15(6): 98–105 [25] 牛瑞杰, 郭俊文, 李晓博, 等. 风光储联合发电系统储能控制策略[J]. 热力发电, 2020, 49(8): 150–155 NIU Ruijie, GUO Junwen, LI Xiaobo, et al. Energy storage control strategy of wind-photovoltaic-storage hybrid system[J]. Thermal Power Generation, 2020, 49(8): 150–155 |
[1] | WANG Jinfeng, LI Jinpeng, XU Yinliang, LIU Haitao, HE Jinxiong, XU Jianyuan. Distributed Optimization for VPP and Distribution Network Operation Considering Uncertainty and Green Certificate Market [J]. Electric Power, 2025, 58(4): 21-30, 192. |
[2] | WANG Guanchao, HUO Yuchong, LI Qun, LI Qiang. Power Optimization of Wind Farms Based on Improved Jensen Model and Deep Reinforcement Learning [J]. Electric Power, 2025, 58(4): 78-89. |
[3] | Mingbing LI, Qiang LI, Xiyang GUAN, Haoyang ZHOU, Rui LU, Yankun FENG. Market Oriented Low-Carbon Optimal Scheduling of Virtual Power Plants Considering Multiple User-Side Resources Coordination [J]. Electric Power, 2025, 58(2): 66-76. |
[4] | Yi ZENG, Yi ZHOU, Jixiang LU, Liangcai ZHOU, Ningkai TANG, Hong LI. Voltage Control Based on Multi-Agent Safe Deep Reinforcement Learning [J]. Electric Power, 2025, 58(2): 111-117. |
[5] | Donglei SUN, Xian WANG, Yi SUN, Xiangfei MENG, Yongchen ZHANG, Yumin ZHANG. Polyhedral Uncertainty Set Based Power System Flexibility Quantitative Assessment [J]. Electric Power, 2024, 57(9): 146-155. |
[6] | Chunhao LU, Chunli ZHOU, Xiqiao LIN, Zhijun CHEN. Probabilistic Modeling Method of Hydrogen Load of Hydrogen Refueling Station Based on Vehicle Behavior Simulation [J]. Electric Power, 2024, 57(8): 46-54, 66. |
[7] | Wenfei YI, Weiping ZHU, Mingzhong ZHENG. Economic Dispatch of Microgrid Considering Data Center and Wind Power Uncertainty [J]. Electric Power, 2024, 57(2): 19-26. |
[8] | Zhuo LI, Yinzhe WANG, Lin YE, Yadi LUO, Xuri SONG, Zhenyu ZHANG. The Application of Graph Neural Networks in Power Systems from Perspective of Perception-Prediction-Optimization [J]. Electric Power, 2024, 57(12): 2-16. |
[9] | Rui WANG, Zhixin FU, Jian WANG, Haoming LIU. A Multi-stage Scenario Tree Generation Method for Wind-Solar Load Based on Complex Feature Extraction and Sinkhorn Distance [J]. Electric Power, 2024, 57(12): 30-40. |
[10] | Songping XUE, Dequan GAO, Ziyan ZHAO, Yuqian LIN, Zejing GUANG, Dawei ZHANG. Routing Algorithm for Power Communication Networks Based on Serivce Differentiated Transmission Requirements [J]. Electric Power, 2024, 57(11): 183-190. |
[11] | Wei CUI, Longyue CHAI, Cong WANG, Wei WANG, Ying WANG, Lun YANG. Fast Calculation Method of Probabilistic Optimal Power Flow for Renewable Dominated Power Grid Based on Improved Convex Relaxation [J]. Electric Power, 2024, 57(10): 166-171. |
[12] | Xianhai ZHAO, Xiaofeng LIU, Zhenya JI, Feng LI, Guobao LIU. Decision Analysis of Load Aggregator Considering Dynamic Behavior of Residential Users [J]. Electric Power, 2024, 57(10): 179-189. |
[13] | Chao ZHANG, Dongmei ZHAO, Yu JI, Ying ZHANG. Real Time Optimal Dispatch of Virtual Power Plant Based on Improved Deep Q Network [J]. Electric Power, 2024, 57(1): 91-100. |
[14] | YUAN Tiejiang, YANG Yang, LI Rui, JIANG Dongfang. Optimized Configuration of Hydrogen-Energy Microgrid Capacity Considering Source Charge Uncertainties [J]. Electric Power, 2023, 56(7): 21-32. |
[15] | SHI Wenzhe, LI Bingjie, YOU Peipei, ZHANG Ling. Optimization Strategy of Building Energy System Based on Deep Reinforcement Learning [J]. Electric Power, 2023, 56(6): 114-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||