Electric Power ›› 2023, Vol. 56 ›› Issue (10): 71-79.DOI: 10.11930/j.issn.1004-9649.202303124
• Key Technology of Active Support and Operation Control Monitoring of Wind Turbine and Farm • Previous Articles Next Articles
Haifei MA(), Wei TENG(
), Dikang PENG, Yibing LIU, Tao JIN
Received:
2023-03-29
Accepted:
2023-06-27
Online:
2023-10-23
Published:
2023-10-28
Supported by:
Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram[J]. Electric Power, 2023, 56(10): 71-79.
部位 | 齿数 | 个数 | ||
行星级内齿圈 | 92 | 1 | ||
行星级行星轮 | 36 | 3 | ||
行星级太阳轮 | 20 | 1 | ||
一级平行轴低速齿轮 | 94 | 1 | ||
一级平行轴中速小齿轮 | 21 | 1 | ||
二级平行轴中速大齿轮 | 125 | 1 | ||
二级平行轴高速齿轮 | 92 | 1 |
Table 1 Wind power gearbox information
部位 | 齿数 | 个数 | ||
行星级内齿圈 | 92 | 1 | ||
行星级行星轮 | 36 | 3 | ||
行星级太阳轮 | 20 | 1 | ||
一级平行轴低速齿轮 | 94 | 1 | ||
一级平行轴中速小齿轮 | 21 | 1 | ||
二级平行轴中速大齿轮 | 125 | 1 | ||
二级平行轴高速齿轮 | 92 | 1 |
转频 | 频率 | 阶次信息 | ||
输入轴 | 0.3 | 0.01005 | ||
低速轴 | 1.87 | 0.0627 | ||
中速轴 | 7.54 | 0.2528 | ||
高速轴 | 29.83 | 1 | ||
啮合频率 | 频率 | 阶次信息 | ||
行星级 | 34.4 | 1.1532 | ||
中速级 | 165.8 | 5.5582 | ||
高速级 | 716 | 24 |
Table 2 Rotating frequency and meshing frequency of shaft
转频 | 频率 | 阶次信息 | ||
输入轴 | 0.3 | 0.01005 | ||
低速轴 | 1.87 | 0.0627 | ||
中速轴 | 7.54 | 0.2528 | ||
高速轴 | 29.83 | 1 | ||
啮合频率 | 频率 | 阶次信息 | ||
行星级 | 34.4 | 1.1532 | ||
中速级 | 165.8 | 5.5582 | ||
高速级 | 716 | 24 |
部位 | 故障特征频率/Hz | 故障特征阶次 | ||
保持架 | 12.0 | 0.402 | ||
滚动体 | 74.3 | 2.490 | ||
外圈 | 168.5 | 5.650 | ||
内圈 | 249.0 | 8.340 |
Table 3 Fault feature frequency and corresponding order of high-speed shaft rear bearing
部位 | 故障特征频率/Hz | 故障特征阶次 | ||
保持架 | 12.0 | 0.402 | ||
滚动体 | 74.3 | 2.490 | ||
外圈 | 168.5 | 5.650 | ||
内圈 | 249.0 | 8.340 |
1 | 苏向敬, 山衍浩, 周汶鑫, 等. 基于GRU和注意力机制的海上风机齿轮箱状态监测[J]. 电力系统保护与控制, 2021, 49 (24): 141- 149. |
SU Xiangjing, SHAN Yanhao, ZHOU Wenxin, et al. GRU and attention mechanism-based condition monitoring of an offshore wind turbine gearbox[J]. Power System Protection and Control, 2021, 49 (24): 141- 149. | |
2 | 李东东, 赵阳, 赵耀, 等. 基于深度特征融合网络的风电机组行星齿轮箱故障诊断方法[J]. 电力系统保护与控制, 2022, 50 (10): 1- 10. |
LI Dongdong, ZHAO Yang, ZHAO Yao, et al. A fault diagnosis method for a wind turbine planetary gearbox based on a deep feature fusion network[J]. Power System Protection and Control, 2022, 50 (10): 1- 10. | |
3 | 丁显, 柳亦兵, 滕伟. 风电机组齿轮箱非平稳振动信号谱分析方法[J]. 中国电力, 2017, 50 (12): 153- 158. |
DING Xian, LIU Yibing, TENG Wei. Spectrum analysis of nonstationary vibration signal for wind turbine gear box[J]. Electric Power, 2017, 50 (12): 153- 158. | |
4 | 姜锐, 滕伟, 刘潇波, 等. 风电机组发电机轴承电腐蚀故障的分析诊断[J]. 中国电力, 2019, 52 (6): 128- 133. |
JIANG Rui, TENG Wei, LIU Xiaobo, et al. Diagnosis of electrical corrosion fault in wind turbine generator bearing based on vibration signal analysis[J]. Electric Power, 2019, 52 (6): 128- 133. | |
5 |
DHAMANDE L S, CHAUDHARI M B. Compound gear-bearing fault feature extraction using statistical features based on time-frequency method[J]. Measurement, 2018, 125, 63- 77.
DOI |
6 |
TANG G, LUO G G, ZHANG W H, et al. Underdetermined blind source separation with variational mode decomposition for compound roller bearing fault signals[J]. Sensors, 2016, 16 (6): 897.
DOI |
7 | 翟昱尧. 基于改进形态分量分析算法的齿轮箱复合故障诊断研究[D]. 郑州: 华北水利水电大学, 2018. |
ZHAI Yuyao. Research on gearbox compound fault diagnosis based on improved morphological component analysis algorithm[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2018. | |
8 |
WAN S T, ZHANG X, DOU L J. Compound fault diagnosis of bearings using improved fast spectral kurtosis with VMD[J]. Journal of Mechanical Science and Technology, 2018, 32 (11): 5189- 5199.
DOI |
9 |
ZHAO D Z, LI J Y, CHENG W D, et al. Vold-Kalman generalized demodulation for multi-faults detection of gear and bearing under variable speeds[J]. Procedia Manufacturing, 2018, 26, 1213- 1220.
DOI |
10 |
LI N, HUANG W G, GUO W J, et al. Multiple enhanced sparse decomposition for gearbox compound fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (3): 770- 781.
DOI |
11 |
代士超, 郭瑜, 伍星. 基于同步平均与倒频谱编辑的齿轮箱滚动轴承故障特征量提取[J]. 振动与冲击, 2015, 34 (21): 205- 209.
DOI |
DAI Shichao, GUO Yu, WU Xing. Gear-box rolling bearings' fault features extraction based on cepstrum editing and time domain synchronous average[J]. Journal of Vibration and Shock, 2015, 34 (21): 205- 209.
DOI |
|
12 | ATANASIU V, DOROFTEI I. Dynamic contact loads of spur gear pairs with addendum modifications[J]. European Journal of Mechanical and Environmental Engineering, 2008, 49 (2): 27- 32. |
13 |
UMEZAWA K, SUZUKI T, SATO T. Vibration of power transmission helical gears: approximate equation of tooth stiffness[J]. Bulletin of JSME, 1986, 29 (251): 1605- 1611.
DOI |
14 |
CHEN B, PENG F Y, WANG H Y, et al. Compound fault identification of rolling element bearing based on adaptive resonant frequency band extraction[J]. Mechanism and Machine Theory, 2020, 154, 104051.
DOI |
15 |
王志坚, 张纪平, 王俊元, 等. 基于MED-MOMEDA的风电齿轮箱复合故障特征提取研究[J]. 电机与控制学报, 2018, 22 (9): 111- 118.
DOI |
WANG Zhijian, ZHANG Jiping, WANG Junyuan, et al. Wind turbine gearbox multi-fault diagnosis based on MED-MOMEDA[J]. Electric Machines and Control, 2018, 22 (9): 111- 118.
DOI |
|
16 |
ABBOUD D, ANTONI J, SIEG-ZIEBA S, et al. Deterministic-random separation in nonstationary regime[J]. Journal of Sound and Vibration, 2016, 362, 305- 326.
DOI |
17 |
ANTONI J, RANDALL R B. Unsupervised noise cancellation for vibration signals: part I—evaluation of adaptive algorithms[J]. Mechanical Systems and Signal Processing, 2004, 18 (1): 89- 101.
DOI |
18 |
PEETERS C, LECLÈRE Q, ANTONI J, et al. Review and comparison of tacholess instantaneous speed estimation methods on experimental vibration data[J]. Mechanical Systems and Signal Processing, 2019, 129, 407- 436.
DOI |
19 |
隆勇, 郭瑜, 伍星, 等. 基于振动信号分离的行星轴承故障特征提取[J]. 振动与冲击, 2020, 39 (13): 78- 83, 109.
DOI |
LONG Yong, GUO Yu, WU Xing, et al. Fault feature extraction of planet bearings based on vibration signal separation[J]. Journal of Vibration and Shock, 2020, 39 (13): 78- 83, 109.
DOI |
|
20 |
ANTONI J, RANDALL R B. Unsupervised noise cancellation for vibration signals: part II—a novel frequency-domain algorithm[J]. Mechanical Systems and Signal Processing, 2004, 18 (1): 103- 117.
DOI |
21 |
贺东台, 郭瑜, 伍星, 等. 基于离散随机分离的齿轮箱复合故障分析法[J]. 机械强度, 2019, 41 (3): 515- 520.
DOI |
HE Dongtai, GUO Yu, WU Xing, et al. Analysis scheme for multi-faults vibration of gearbox based on discrete random separation[J]. Journal of Mechanical Strength, 2019, 41 (3): 515- 520.
DOI |
|
22 |
MOSHREFZADEH A, FASANA A. The Autogram: an effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 105, 294- 318.
DOI |
23 |
ANTONI J. The infogram: Entropic evidence of the signature of repetitive transients[J]. Mechanical Systems and Signal Processing, 2016, 74, 73- 94.
DOI |
24 | 刘苗苗. 基于改进自相关图的数控机床滚动轴承早期故障诊断研究[D]. 武汉: 华中科技大学, 2021. |
LIU Miaomiao. Research on incipient fault diagnosis of rolling element bearing based on improved autogram computer numerical control machine tools[D]. Wuhan: Huazhong University of Science and Technology, 2021. |
[1] | JI Zhanyang, HU Yang, KONG Lingxing, SONG Ziqiu, DENG Dan, LIU Jizhen. Dynamic Modeling and Simulation of Wind Turbine Unit Primary Frequency Regulation Considering Multi-domain Coupling Characteristics [J]. Electric Power, 2025, 58(4): 56-67. |
[2] | WANG Xiaodong, LI Qing, FU Deyi, LIU Yingming, WANG Ruojin. Fatigue Load Prediction of Wind Turbine Drive Train Based on CNN-BiLSTM [J]. Electric Power, 2025, 58(4): 90-97. |
[3] | Peng ZHENG, Pengcheng HAN, Guodong WANG, Ying LOU. Refined Diagnosis Method for Disconnected High-Resistance Grounding Faults in Medium-Voltage Distribution Lines [J]. Electric Power, 2024, 57(4): 220-228. |
[4] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. |
[5] | Dan LI, Yunyan LIANG, Shuwei MIAO, Zeren FANG, Yue HU, Shuai HE. Daily Power Scenario Generation Method for Multiple Wind Farms Based on Gaussian Mixture Clustering and Improved Conditional Variational Autoencoder [J]. Electric Power, 2024, 57(12): 17-29. |
[6] | Heqian LIU, Jian ZHANG, Haiyue ZHANG, Hongda YANG, Shiyu CHEN, Yubo SHEN, Lei WANG. A Fault Diagnosis Method for Interturn Short Circuit of Dry-Type Air-Core Reactor Based on High Frequency Impedance Spectrum [J]. Electric Power, 2024, 57(10): 218-224. |
[7] | YANG Xiaofeng, FANG Yihang, ZHAO Pengzhen, WANG Chengmin, XIE Ning. State Recognition of Wind Turbines Based on K-means and BPNN [J]. Electric Power, 2023, 56(6): 158-166,175. |
[8] | LI Yan, CHENG Xin, HUANG Zuliang, YANG Zhuo. Research on High Reliability Three-Phase Multi-function Grid-Connected Converter [J]. Electric Power, 2023, 56(5): 172-181. |
[9] | LI Bohao, GUO Kunli, LV Jiajun, CAI Weizheng, LIU Luhao, LIU Fengyi, HAO Yifan. Inhibition of Subsynchronous Oscillation of Direct-Drive Wind Turbine by Improved LADRC in Weak Grids [J]. Electric Power, 2023, 56(4): 56-67. |
[10] | LI Gang, MENG Kun, HE Shuai, LIU Yunpeng, YANG Ning. A Bi-LSTM-Based Transformer Fault Diagnosis Method Considering Feature Coupling [J]. Electric Power, 2023, 56(3): 100-108,117. |
[11] | Wei HAN, Wenyan DUAN, Xingwei DU, Feng YAO, Weidong MA, Lei LIU. Fault Diagnosis Method for Operational Security Control System Based on Digital Twins [J]. Electric Power, 2023, 56(11): 121-127. |
[12] | Bing LI, Yunshan BAI, Kuan ZHAO, Congbin GUO, Yongjie ZHAI. Surface Defect Detection Algorithm for Wind Turbine Blades Based on HSCA-YOLOv7 [J]. Electric Power, 2023, 56(10): 43-52. |
[13] | Lei WANG, Yibing LIU, Wei TENG, Xinwei HUANG, Jiantao LIU. Research and Development of Nondestructive Detection Technology for Wind Turbine Blades [J]. Electric Power, 2023, 56(10): 80-95. |
[14] | Yuhui WU, Yangfan ZHANG, Feng GAO, Yu WANG, Yaohan WANG, Weixin YANG, Hong ZHANG. Research on Online Monitoring of Crack Damage of Wind Turbine Blades Based on Working Modal Analysis [J]. Electric Power, 2023, 56(10): 106-114. |
[15] | Shuang WANG, Qian LUO, Bo TANG, Lan JIANG, Jin LI. CHPOA-DBN Transformer Fault Diagnosis Method Considering Sample Within-Class Imbalance [J]. Electric Power, 2023, 56(10): 133-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||