Electric Power ›› 2025, Vol. 58 ›› Issue (5): 158-165.DOI: 10.11930/j.issn.1004-9649.202406015
• New-Type Power Grid • Previous Articles Next Articles
Received:2024-04-20
Online:2025-05-30
Published:2025-05-28
Supported by:ZHANG Huishan. High-Voltage CVT Fault Diagnosis Based on Effective Data Recognition and Multi-dimensional Information Fusion[J]. Electric Power, 2025, 58(5): 158-165.
| 相关系数 | CVT1 | CVT2 | CVT3 | CVT4 | CVT5 | CVT6 | CVT7 | |||||||
| CVT1 | 1.00 | 0.84 | 0.68 | 0.88 | 0.74 | 0.88 | 0.63 | |||||||
| CVT2 | 0.84 | 1.00 | 0.68 | 0.84 | 0.85 | 0.90 | 0.65 | |||||||
| CVT3 | 0.68 | 0.68 | 1.00 | 0.68 | 0.77 | 0.69 | 0.85 | |||||||
| CVT4 | 0.88 | 0.84 | 0.68 | 1.00 | 0.74 | 0.88 | 0.63 | |||||||
| CVT5 | 0.74 | 0.85 | 0.77 | 0.74 | 1.00 | 0.83 | 0.78 | |||||||
| CVT6 | 0.88 | 0.90 | 0.69 | 0.88 | 0.83 | 1.00 | 0.64 | |||||||
| CVT7 | 0.63 | 0.65 | 0.85 | 0.63 | 0.78 | 0.64 | 1.00 |
Table 1 The correlation coefficient of each CVT shown in figure 1
| 相关系数 | CVT1 | CVT2 | CVT3 | CVT4 | CVT5 | CVT6 | CVT7 | |||||||
| CVT1 | 1.00 | 0.84 | 0.68 | 0.88 | 0.74 | 0.88 | 0.63 | |||||||
| CVT2 | 0.84 | 1.00 | 0.68 | 0.84 | 0.85 | 0.90 | 0.65 | |||||||
| CVT3 | 0.68 | 0.68 | 1.00 | 0.68 | 0.77 | 0.69 | 0.85 | |||||||
| CVT4 | 0.88 | 0.84 | 0.68 | 1.00 | 0.74 | 0.88 | 0.63 | |||||||
| CVT5 | 0.74 | 0.85 | 0.77 | 0.74 | 1.00 | 0.83 | 0.78 | |||||||
| CVT6 | 0.88 | 0.90 | 0.69 | 0.88 | 0.83 | 1.00 | 0.64 | |||||||
| CVT7 | 0.63 | 0.65 | 0.85 | 0.63 | 0.78 | 0.64 | 1.00 |
| 相关系数 | CVT1 | CVT2 | CVT3 | CVT4 | ||||
| CVT1 | ||||||||
| CVT2 | ||||||||
| CVT3 | ||||||||
| CVT4 |
Table 2 The correlation coefficient of each CVT shown in figure 2
| 相关系数 | CVT1 | CVT2 | CVT3 | CVT4 | ||||
| CVT1 | ||||||||
| CVT2 | ||||||||
| CVT3 | ||||||||
| CVT4 |
| 分类 | 指标 | 标准 | ||
| 绝缘检测 | 高压电容器电容量 b1 | |初值差|≤2% | ||
| 分压电容器电容量 b2 | |初值差|≤2% | |||
| 高压电容器介损 b3 | ≤0.05(油纸绝缘); ≤0.02(膜纸绝缘) | |||
| 分压电容器介损 b4 | ≤0.05(油纸绝缘); ≤0.02(膜纸绝缘) | |||
| 局部放电 | 视在放电量 b5 | ≤初值 | ||
| 二次电压 红外热像 | 相电压差(有效值) b6 | ≤0.4 V | ||
| 相温度差值 b7 | ≤2 ℃ |
Table 3 CVT fault diagnosis indicators
| 分类 | 指标 | 标准 | ||
| 绝缘检测 | 高压电容器电容量 b1 | |初值差|≤2% | ||
| 分压电容器电容量 b2 | |初值差|≤2% | |||
| 高压电容器介损 b3 | ≤0.05(油纸绝缘); ≤0.02(膜纸绝缘) | |||
| 分压电容器介损 b4 | ≤0.05(油纸绝缘); ≤0.02(膜纸绝缘) | |||
| 局部放电 | 视在放电量 b5 | ≤初值 | ||
| 二次电压 红外热像 | 相电压差(有效值) b6 | ≤0.4 V | ||
| 相温度差值 b7 | ≤2 ℃ |
| 状态类型 | 数量 | 状态类型 | 数量 | |||
| A | 127 | D | 69 | |||
| B | 70 | E | 46 | |||
| C | 51 | F | 57 |
Table 4 Sample distribution
| 状态类型 | 数量 | 状态类型 | 数量 | |||
| A | 127 | D | 69 | |||
| B | 70 | E | 46 | |||
| C | 51 | F | 57 |
| 状态 | 均值 | 方差 | ||||||||||||||||
| A | 0.12 | 0.08 | 0.11 | 0.13 | 0.12 | 0.08 | 0.06 | |||||||||||
| B | 0.09 | 0.03 | 0.05 | 0.02 | 0.17 | 0.17 | 0.07 | |||||||||||
| C | 0.08 | 0.06 | 0.01 | 0.02 | 0.08 | 0.24 | 0.09 | |||||||||||
| D | 0.13 | 0.02 | 0.08 | 0.19 | 0.11 | 0.19 | 0.08 | |||||||||||
| E | 0.06 | 0.28 | 0.12 | 0.06 | 0.12 | 0.04 | 0.1 | |||||||||||
| F | 0.03 | 0.04 | 0.19 | 0.16 | 0.03 | 0.14 | 0.02 |
Table 5 7-dimensional contribution of variance
| 状态 | 均值 | 方差 | ||||||||||||||||
| A | 0.12 | 0.08 | 0.11 | 0.13 | 0.12 | 0.08 | 0.06 | |||||||||||
| B | 0.09 | 0.03 | 0.05 | 0.02 | 0.17 | 0.17 | 0.07 | |||||||||||
| C | 0.08 | 0.06 | 0.01 | 0.02 | 0.08 | 0.24 | 0.09 | |||||||||||
| D | 0.13 | 0.02 | 0.08 | 0.19 | 0.11 | 0.19 | 0.08 | |||||||||||
| E | 0.06 | 0.28 | 0.12 | 0.06 | 0.12 | 0.04 | 0.1 | |||||||||||
| F | 0.03 | 0.04 | 0.19 | 0.16 | 0.03 | 0.14 | 0.02 |
| 状态 | ||||||||||||
| A | 0.86 | 0.12 | 0.09 | 0.16 | 0.06 | 0.14 | ||||||
| B | 0.02 | 0.96 | 0.05 | 0.07 | 0.03 | 0.11 | ||||||
| C | 0.03 | 0.21 | 0.92 | 0.01 | 0.04 | 0.03 | ||||||
| D | 0.12 | 0.08 | 0.03 | 0.92 | 0.01 | 0.01 | ||||||
| E | 0.01 | 0.06 | 0.08 | 0.03 | 0.93 | 0.02 | ||||||
| F | 0.06 | 0.02 | 0.12 | 0.03 | 0.01 | 0.91 |
Table 6 Mean membership degree of fuzzy set
| 状态 | ||||||||||||
| A | 0.86 | 0.12 | 0.09 | 0.16 | 0.06 | 0.14 | ||||||
| B | 0.02 | 0.96 | 0.05 | 0.07 | 0.03 | 0.11 | ||||||
| C | 0.03 | 0.21 | 0.92 | 0.01 | 0.04 | 0.03 | ||||||
| D | 0.12 | 0.08 | 0.03 | 0.92 | 0.01 | 0.01 | ||||||
| E | 0.01 | 0.06 | 0.08 | 0.03 | 0.93 | 0.02 | ||||||
| F | 0.06 | 0.02 | 0.12 | 0.03 | 0.01 | 0.91 |
| 诊断方法 | 准确率/% | 标准差 | ||
| 本文方法 | 86.6 | 1.8 | ||
| SVM | 76.2 | 2.1 | ||
| 决策树 | 79.2 | 3.4 |
Table 7 Comparison of diagnostic results
| 诊断方法 | 准确率/% | 标准差 | ||
| 本文方法 | 86.6 | 1.8 | ||
| SVM | 76.2 | 2.1 | ||
| 决策树 | 79.2 | 3.4 |
| 诊断指标 | 监测值/% | 标准值/% | ||
| b1 | 1.3 | |初值差|≤2 | ||
| b2 | 1.2 | |初值差|≤2 | ||
| b3 | 0.764 | ≤1.27(膜纸绝缘) | ||
| b4 | 0.509 | ≤1.27(膜纸绝缘) | ||
| b5 | 18 | ≤100 | ||
| b6 | 50 | ≤100 | ||
| b7 | 60 | ≤100 |
Table 8 Diagnostic indicators and normalized values
| 诊断指标 | 监测值/% | 标准值/% | ||
| b1 | 1.3 | |初值差|≤2 | ||
| b2 | 1.2 | |初值差|≤2 | ||
| b3 | 0.764 | ≤1.27(膜纸绝缘) | ||
| b4 | 0.509 | ≤1.27(膜纸绝缘) | ||
| b5 | 18 | ≤100 | ||
| b6 | 50 | ≤100 | ||
| b7 | 60 | ≤100 |
| 模糊集 | 隶属度 | |
| 0.06 | ||
| 0.82 | ||
| 0.29 | ||
| 0.18 | ||
| 0.09 | ||
| 0.07 | ||
| 诊断结果:高压电容器故障 | ||
Table 9 Membership degree and diagnostic result
| 模糊集 | 隶属度 | |
| 0.06 | ||
| 0.82 | ||
| 0.29 | ||
| 0.18 | ||
| 0.09 | ||
| 0.07 | ||
| 诊断结果:高压电容器故障 | ||
| 1 | 陈俊, 刘卫东, 顾乐, 等. 电容式电力设备局部放电高频和特高频综合在线检测[J]. 高压电器, 2018, 54 (7): 195- 199. |
| CHEN Jun, LIU Weidong, GU Le, et al. Comprehensive on-line detection of partial discharge in capacitive power equipment by integration of HF and UHF[J]. High Voltage Apparatus, 2018, 54 (7): 195- 199. | |
| 2 | 刘刚, 王秀茹, 凌万水, 等. 一种10 kV电压等级非接触式电压互感器研究[J]. 电力科学与技术学报, 2023, 38 (3): 197- 204. |
| LIU Gang, WANG Xiuru, LING Wanshui, et al. Research on a 10 kV voltage level contactless voltage transformer[J]. Journal of Electric Power Science and Technology, 2023, 38 (3): 197- 204. | |
| 3 |
李光, 石培杰, 孙鹏, 等. CVT二次电压异常原因及对策分析[J]. 电力电容器与无功补偿, 2014, 35 (6): 81- 85.
|
|
LI Guang, SHI Peijie, SUN Peng, et al. Causes analysis and countermeasures on abnormal secondary voltage of CVT[J]. Power Capacitor & Reactive Power Compensation, 2014, 35 (6): 81- 85.
|
|
| 4 |
刘永鑫, 王鹏皓, 李艳鹏, 等. 基于CVT电容元件击穿的事故分析计算[J]. 电力电容器与无功补偿, 2014, 35 (6): 77- 80, 90.
|
|
LIU Yongxin, WANG Penghao, LI Yanpeng, et al. Analysis and calculation on the fault of CVT caused by capacitor element breakdown[J]. Power Capacitor & Reactive Power Compensation, 2014, 35 (6): 77- 80, 90.
|
|
| 5 | 邢立坤, 李国伟, 王俊波, 等. 一起110 kV CVT红外异常的诊断分析[J]. 电力电容器与无功补偿, 2015, 36 (1): 68- 72. |
| XING Likun, LI Guowei, WANG Junbo, et al. Diagnostic analysis on abnormal infrared of one 110 kV CVT[J]. Power Capacitor & Reactive Power Compensation, 2015, 36 (1): 68- 72. | |
| 6 | 邱太洪, 罗容波, 李国伟, 等. 电容式电压互感器二次电压在线监测在故障检测分析中的应用[J]. 变压器, 2015, 52 (9): 70- 73. |
| QIU Taihong, LUO Rongbo, LI Guowei, et al. Application of on-line monitoring to fault detection and analysis of secondary voltage of capacitor voltage transformer[J]. Transformer, 2015, 52 (9): 70- 73. | |
| 7 | 张 曦, 周文华, 吴悦怡, 等. 电压测量值在电容式电压互感器故障检测中的应用[J]. 江苏电机工程, 2011, 30 (3): 19- 24. |
| ZHANG Xi, ZHOU Wenhua, WU Yueyi, et al. Application of voltage measurement value in the capacitive voltage transformer fault detection[J]. Jiangsu Electrical Engineering, 2011, 30 (3): 19- 24. | |
| 8 | 鲍志威. 电容式电压互感器误差在线异常监测及绝缘故障辨识方法研究[D]. 武汉: 华中科技大学, 2021. |
| BAO Zhiwei. Research on the method for on-line anomaly monitoring of errors and insulation fault identification of capacitor voltage transformer[D]. Wuhan: Huazhong University of Science & Technology, 2021. | |
| 9 | 孟 展. 高压电容式电压互感器运行状态在线评估方法研究[D]. 武汉: 华中科技大学, 2020. |
| MENG Zhan. Research on online evaluation method for the operation status of high-voltage capacitor voltage transformer[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
| 10 | 闵永智, 令世文, 王果. 基于混合特征选择和IOMA-CNN的变压器故障诊断[J]. 电力系统保护与控制, 2024, 52 (23): 1- 9. |
| MIN Yongzhi, LING Shiwen, WANG Guo. Transformer fault diagnosis based on hybrid feature selection and IOMA-CNN[J]. Power System Protection and Control, 2024, 52 (23): 1- 9. | |
| 11 | 郑海龙, 吕桂贤, 江覃晴, 等. 基于信息熵理论对变压器光纤传感器声探测信号的特征提取及识别研究[J]. 电力系统保护与控制, 2024, 52 (10): 156- 166. |
| ZHENG Hailong, LV Guixian, JIANG Tanqing, et al. Feature extraction and recognition of transformer fiber optic sensor acoustic detection signals based on information entropy theory[J]. Power System Protection and Control, 2024, 52 (10): 156- 166. | |
| 12 | 李传鉴. CVT带电异常检测与应用研究[D]. 广州: 广东工业大学, 2019. |
| LI Chuanjian. research on CVT live abnormal detection and application[D]. Guangzhou: Guangdong University of Technology, 2019. | |
| 13 | 易亚文, 江传宾, 龚世玉, 等. 基于因子分析与统计学技术的保护测量回路误差评估[J]. 中国电力, 2023, 56 (12): 183- 190. |
| YI Yawen, JIANG Chuanbin, GONG Shiyu, et al. Protection loop error measurement based on factor analysis and statistics technology[J]. Electric Power, 2023, 56 (12): 183- 190. | |
| 14 | 美) 金在温 Jae-On Kim, (美) 米勒 Mueller, Charles W. , 等. 因子分析: 统计方法与应用问题[M]. 上海: 格致出版社+上海人民出版社, 2023. |
| 15 | 钱皓, 田一慧, 王涛. 基于高斯型隶属函数新的模糊插值推理方法[J]. 辽宁工业大学学报(自然科学版), 2009, 29 (2): 136- 140. |
| QIAN Hao, TIAN Yihui, WANG Tao. New method of fuzzy interpolative reasoning based on Gaussian-type membership function[J]. Journal of Liaoning University of Technology (Natural Science Edition), 2009, 29 (2): 136- 140. | |
| 16 | 严宏, 杨波, 杨红雨. 基于异方差高斯过程的时间序列数据离群点检测[J]. 计算机应用, 2018, 38 (5): 1346- 1352. |
| YAN Hong, YANG Bo, YANG Hongyu. Outlier detection in time series data based on heteroscedastic Gaussian processes[J]. Journal of Computer Applications, 2018, 38 (5): 1346- 1352. | |
| 17 | 何尧, 梁宏池, 连鸿松, 等. 基于滑动窗口和多元高斯分布的变压器油色谱异常值检测[J]. 高压电器, 2020, 56 (1): 203- 209. |
| HE Yao, LIANG Hongchi, LIAN Hongsong, et al. Outlier detection of power transformer oil chromatographic data based on algorithm sliding windows and multivariate Gaussian distribution[J]. High Voltage Apparatus, 2020, 56 (1): 203- 209. | |
| 18 |
张开放, 苏华友, 窦勇. 一种基于混淆矩阵的多分类任务准确率评估新方法[J]. 计算机工程与科学, 2021, 43 (11): 1910- 1919.
|
|
ZHANG Kaifang, SU Huayou, DOU Yong. A new multi-classification task accuracy evaluation method based on confusion matrix[J]. Computer Engineering & Science, 2021, 43 (11): 1910- 1919.
|
|
| 19 | 徐健锋, 苗夺谦, 张远健. 基于混淆矩阵的多目标优化三支决策模型[J]. 模式识别与人工智能, 2017, 30 (9): 859- 864. |
| XU Jianfeng, MIAO Duoqian, ZHANG Yuanjian. Three-way decisions model for multi-object optimization based on confusion matrix[J]. Pattern Recognition and Artificial Intelligence, 2017, 30 (9): 859- 864. | |
| 20 | 周润景, 武立群, 蔺雨露. 基于MATLAB的人工智能模式识别[M]. 北京: 电子工业出版社, 2021. |
| 21 | 张文元, 赵卫国, 晋涛, 等. 多神经网络与证据理论的变压器故障诊断方法[J]. 高压电器, 2018, 54 (8): 207- 211. |
| ZHANG Wenyuan, ZHAO Weiguo, JIN Tao, et al. Fault diagnosis method of transformer based on multi-neural network and evidence theory[J]. High Voltage Apparatus, 2018, 54 (8): 207- 211. |
| [1] | CAO Haiou, HU Xiaoli, DAI Wei, HU Jiatong, LI Ping, ZHANG Yue. A Power Grid Fault Diagnosis Method of Online Monitoring System for Relay Protection under Multiple Dimensionality Reduction [J]. Electric Power, 2025, 58(7): 128-136. |
| [2] | Zixiang PEI, Kai SHU, Xuntian ZHOU, Tiancheng FAN, Yuhe LUO, Yuting LIU. Lightning Risk Assessment of Distribution Network Line Based on Information Fusion [J]. Electric Power, 2024, 57(7): 125-131. |
| [3] | Heqian LIU, Jian ZHANG, Haiyue ZHANG, Hongda YANG, Shiyu CHEN, Yubo SHEN, Lei WANG. A Fault Diagnosis Method for Interturn Short Circuit of Dry-Type Air-Core Reactor Based on High Frequency Impedance Spectrum [J]. Electric Power, 2024, 57(10): 218-224. |
| [4] | LI Yan, CHENG Xin, HUANG Zuliang, YANG Zhuo. Research on High Reliability Three-Phase Multi-function Grid-Connected Converter [J]. Electric Power, 2023, 56(5): 172-181. |
| [5] | LI Gang, MENG Kun, HE Shuai, LIU Yunpeng, YANG Ning. A Bi-LSTM-Based Transformer Fault Diagnosis Method Considering Feature Coupling [J]. Electric Power, 2023, 56(3): 100-108,117. |
| [6] | Yawen YI, Chuanbin JIANG, Shiyu GONG, Xiaoyuan QIN, Jingpu ZHAO, Zhenxing LI. Protection Loop Error Measurement Based on Factor Analysis and Statistics Technology [J]. Electric Power, 2023, 56(12): 183-190. |
| [7] | Wei HAN, Wenyan DUAN, Xingwei DU, Feng YAO, Weidong MA, Lei LIU. Fault Diagnosis Method for Operational Security Control System Based on Digital Twins [J]. Electric Power, 2023, 56(11): 121-127. |
| [8] | Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram [J]. Electric Power, 2023, 56(10): 71-79. |
| [9] | Shuang WANG, Qian LUO, Bo TANG, Lan JIANG, Jin LI. CHPOA-DBN Transformer Fault Diagnosis Method Considering Sample Within-Class Imbalance [J]. Electric Power, 2023, 56(10): 133-144. |
| [10] | Hongjie ZHANG, Guifeng CHEN, Hongwei YAN, Xiaolong YANG, Tianren HOU, Wei ZHANG. Fault Diagnosis of LSTM Network Tansformer Based on SMOTE and Bayes Optimization [J]. Electric Power, 2023, 56(10): 164-170. |
| [11] | Ming ZHONG, Jun TAO, Xunyu LIU, Yi YANG, Bingyuan YANG. Smart Substation Optical Fiber Virtual and Real Loop Mapping and Fault Diagnosis Technology [J]. Electric Power, 2023, 56(10): 171-178. |
| [12] | CHEN Tie, LENG Haowei, LI Xianshan, CHEN Yifu. Transformer Hierarchical Fault Diagnosis Model Based on Dissolved Gas Analysis of Insulating Oil and Class Overlap Features [J]. Electric Power, 2022, 55(7): 22-32,41. |
| [13] | LI Tianhui, PANG Xianhai, FAN Hui, ZHEN Li, GU Chaomin, DONG Chi. Fault Diagnosis Method for Circuit Breaker Opening and Closing Coil Based on IEMD and GA-WNN [J]. Electric Power, 2022, 55(5): 111-121. |
| [14] | HAO Lingling, ZHU Yongli, WANG Yongzheng. Transformer Fault Diagnosis Method Based on DCAE-KSSELM [J]. Electric Power, 2022, 55(2): 125-130. |
| [15] | YU Bin, SONG Xingrong, ZHOU Ting, LUO Linbo, LI Hui, CHE Liang. Open-Circuit Fault Diagnosis Method of Energy Storage Converter Based on MFCC Feature Set [J]. Electric Power, 2022, 55(12): 34-42. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

