Electric Power ›› 2024, Vol. 57 ›› Issue (3): 113-125.DOI: 10.11930/j.issn.1004-9649.202310052
• Power System • Previous Articles Next Articles
					
													Fan YANG1(
), Shuiping WEI2(
), Yi REN2(
), Zilong CHEN2(
), Jian LE2(
)
												  
						
						
						
					
				
Received:2023-10-20
															
							
															
							
																	Accepted:2024-01-18
															
							
																	Online:2024-03-23
															
							
							
																	Published:2024-03-28
															
							
						Supported by:Fan YANG, Shuiping WEI, Yi REN, Zilong CHEN, Jian LE. Multi-objective Collaborative Optimization Control Method of Composite Function Grid Connected Inverters Considering Variable Weight Hybrid Decision Evaluation[J]. Electric Power, 2024, 57(3): 113-125.
| 仿真模块 | 变量 | 参数值 | ||
| PVMFGCI | 开关频率/Hz | 10 000 | ||
| 直流母线电压Udc/V | 700 | |||
| 滤波电感L/mH | 2 | |||
| 滤波电容C/μF | 10 | |||
| 阻尼电阻R/Ω | 4 | |||
| 并网功率跟踪指令 值Pg, Qg(kW, kV·A)  | (18, 0)/(20, 0)/(16, 0) | |||
| 线路 | 线路的单位电阻/ (Ω·km–1)  | 0.642 | ||
| 线路的单位电抗/ (Ω·km–1)  | 0.083 | |||
| 配网电源 | 电压Us/V | 380 | ||
| PCC1~3 非线性负荷  | R/Ω, L/H | 15, 0.005 | ||
| 20, 0.010 | ||||
| 25, 0.015 | ||||
| PCC1~3 三相不平衡 负荷  | R/Ω, L/H | 2.9, 0.17/4, 0.079/1.6, 0.04 | ||
| 3.3, 0.14/4, 0.072/2.6, 0.035 | ||||
| 3.1, 0.12/4, 0.065/2.4, 0.046 | ||||
| PCC1~3 三相平衡负荷  | R/Ω | (35, 35, 35)/(30, 30, 30)/ (25, 25, 25)  | ||
| DG1/DG2/DG3 | 指令值P/kW,  Q/(kV·A)  | (36, 0)/(32, 0)/(36, 0) | 
Table 1 Simulation system parameters
| 仿真模块 | 变量 | 参数值 | ||
| PVMFGCI | 开关频率/Hz | 10 000 | ||
| 直流母线电压Udc/V | 700 | |||
| 滤波电感L/mH | 2 | |||
| 滤波电容C/μF | 10 | |||
| 阻尼电阻R/Ω | 4 | |||
| 并网功率跟踪指令 值Pg, Qg(kW, kV·A)  | (18, 0)/(20, 0)/(16, 0) | |||
| 线路 | 线路的单位电阻/ (Ω·km–1)  | 0.642 | ||
| 线路的单位电抗/ (Ω·km–1)  | 0.083 | |||
| 配网电源 | 电压Us/V | 380 | ||
| PCC1~3 非线性负荷  | R/Ω, L/H | 15, 0.005 | ||
| 20, 0.010 | ||||
| 25, 0.015 | ||||
| PCC1~3 三相不平衡 负荷  | R/Ω, L/H | 2.9, 0.17/4, 0.079/1.6, 0.04 | ||
| 3.3, 0.14/4, 0.072/2.6, 0.035 | ||||
| 3.1, 0.12/4, 0.065/2.4, 0.046 | ||||
| PCC1~3 三相平衡负荷  | R/Ω | (35, 35, 35)/(30, 30, 30)/ (25, 25, 25)  | ||
| DG1/DG2/DG3 | 指令值P/kW,  Q/(kV·A)  | (36, 0)/(32, 0)/(36, 0) | 
| 场景 | 设置 | |
| 1 | 0~0.1 s, PVMFGCI 1~3均不投入 | |
| 2 | 0.1~0.2 s,PVMFGCI 1~3分别补偿100%、80%和70%的谐波分量 | |
| 3 | 0.2~0.3 s,PVMFGCI 1~3均同时补偿全部谐波和不平衡分量 | |
| 4 | 0.3~0.4 s,PVMFGCI 1同时补偿全部谐波、不平衡分量以及60%的无功分量,PVMFGCI 2同时补偿全部谐波、不平衡分量以及70%的无功分量,PVMFGCI 3同时补偿全部谐波、不平衡分量以及80%的无功分量。 | |
| 5 | 0.4~0.5 s,PVMFGCI 1~3均完全补偿 | |
| 6 | 0.5~0.6 s,采用基于MOAHA的多目标优化补偿,多目标函数及决策变量按照3.1节原则设定,分别为各补偿点的电能质量综合指标最小、补偿容量最小及谐波畸变率、负序不平衡度、零序不平衡度、无功系数的补偿系数,MOAHA优化算法中种群设置为100,迭代次数为1 000,整体优化过程按照3.2中流程来实施 | 
Table 2 Simulation scene settings
| 场景 | 设置 | |
| 1 | 0~0.1 s, PVMFGCI 1~3均不投入 | |
| 2 | 0.1~0.2 s,PVMFGCI 1~3分别补偿100%、80%和70%的谐波分量 | |
| 3 | 0.2~0.3 s,PVMFGCI 1~3均同时补偿全部谐波和不平衡分量 | |
| 4 | 0.3~0.4 s,PVMFGCI 1同时补偿全部谐波、不平衡分量以及60%的无功分量,PVMFGCI 2同时补偿全部谐波、不平衡分量以及70%的无功分量,PVMFGCI 3同时补偿全部谐波、不平衡分量以及80%的无功分量。 | |
| 5 | 0.4~0.5 s,PVMFGCI 1~3均完全补偿 | |
| 6 | 0.5~0.6 s,采用基于MOAHA的多目标优化补偿,多目标函数及决策变量按照3.1节原则设定,分别为各补偿点的电能质量综合指标最小、补偿容量最小及谐波畸变率、负序不平衡度、零序不平衡度、无功系数的补偿系数,MOAHA优化算法中种群设置为100,迭代次数为1 000,整体优化过程按照3.2中流程来实施 | 
| PCC | C1 | C2 | C3 | C4 | ||||
| 1 | 0.1 815 | 0.1 267 | 0.2 443 | 0.3 458 | ||||
| 2 | 0.1 664 | 0.1 083 | 0.1 859 | 0.2 939 | ||||
| 3 | 0.1 298 | 0.0 713 | 0.1 308 | 0.2 738 | 
Table 3 Power quality indicators without compensation
| PCC | C1 | C2 | C3 | C4 | ||||
| 1 | 0.1 815 | 0.1 267 | 0.2 443 | 0.3 458 | ||||
| 2 | 0.1 664 | 0.1 083 | 0.1 859 | 0.2 939 | ||||
| 3 | 0.1 298 | 0.0 713 | 0.1 308 | 0.2 738 | 
| 1 | 江悦, 曹旌, 梁刚, 等. 光伏并网逆变器谐波特性分析与谐波电流抑制[J]. 电力系统及其自动化学报, 2022, 34 (9): 64- 72. | 
| JIANG Yue, CAO Jing, LIANG Gang, et al. Analysis of harmonic characteristics and suppression of harmonic current for photovoltaic grid-connected inverter[J]. Proceedings of the CSU-EPSA, 2022, 34 (9): 64- 72. | |
| 2 | 黄海宏, 郑小朋, 王海欣. 三相四线制有源电力滤波器均压环优化设计[J]. 电力自动化设备, 2020, 40 (7): 103- 107. | 
| HUANG Haihong, ZHENG Xiaopeng, WANG Haixin. Optimal design of voltage-balance loop for three-phase four-wire APF[J]. Electric Power Automation Equipment, 2020, 40 (7): 103- 107. | |
| 3 |  
											ZHAI H, ZHUO F, ZHU C Z, et al. An optimal compensation method of shunt active power filters for system-wide voltage quality improvement[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (2): 1270- 1281. 
																							 DOI  | 
										
| 4 | 薛飞, 李旭涛, 李宏强, 等. 基于双侧电压反馈控制策略的并网光伏系统电压稳定性研究[J]. 中国电力, 2022, 55 (9): 183- 191, 203. | 
| XUE Fei, LI Xutao, LI Hongqiang, et al. Research on voltage stability of grid-connected photovoltaic system based on double-side voltage feedback control[J]. Electric Power, 2022, 55 (9): 183- 191, 203. | |
| 5 | 张茜, 毛义鹏, 余乐, 等. 适用于无直流侧电压传感器单相级联H桥型光伏逆变器的直接功率模型预测控制方法[J]. 中国电力, 2022, 55 (2): 172- 180. | 
| ZHANG Qian, MAO Yipeng, YU Le, et al. Direct power model predictive control method for DC-side sensor-less single-phase cascaded H-bridges photovoltaic inverters[J]. Electric Power, 2022, 55 (2): 172- 180. | |
| 6 | 孙广宇, 李永丽, 靳伟, 等. 基于三相多功能逆变器的微电网电能质量综合治理策略[J]. 电网技术, 2019, 43 (4): 1211- 1221. | 
| SUN Guangyu, LI Yongli, JIN Wei, et al. A comprehensive power quality control strategy for microgrid based on three-phase multi-function inverters[J]. Power System Technology, 2019, 43 (4): 1211- 1221. | |
| 7 | 靳伟, 李永丽, 卜立之, 等. 基于CPT理论和重复控制的多功能并网逆变器研究[J]. 电工技术学报, 2018, 33 (18): 4345- 4356. | 
| JIN Wei, LI Yongli, BU Lizhi, et al. Research on multi-functional grid-connected inverters based on conservative power theory and repetitive control[J]. Transactions of China Electrotechnical Society, 2018, 33 (18): 4345- 4356. | |
| 8 | 黄龑, 郝迎鹏, 汪慧娴, 等. 基于二阶统一模型的分布式发电并网同步控制研究[J]. 中国电力, 2023, 56 (12): 41- 50. | 
| HUANG Yan, HAO Yingpeng, WANG Huixian, et al. Research on synchronization control of distributed generation based on second-order unified model[J]. Electric Power, 2023, 56 (12): 41- 50. | |
| 9 | ALGADDAFI A, ALTUWAYJIRI S A, AHMED O A, et al. An optimal current controller design for a grid connected inverter to improve power quality and test commercial PV inverters[J]. The Scientific World Journal, 2017, 2017, 1393476. | 
| 10 | 周子轩, 王果, 王久珲. 不同电流检测方法对并网逆变器用于电能质量治理的比较分析[J]. 电力电容器与无功补偿, 2020, 41 (1): 169- 175. | 
| ZHOU Zixuan, WANG Guo, WANG Jiuhui. Comparative analysis of different current detection methods for power quality control of grid-connected inverters[J]. Power Capacitor & Reactive Power Compensation, 2020, 41 (1): 169- 175. | |
| 11 | 蔡维正, 郭昆丽, 刘璐雨, 等. 基于一阶LADRC控制的直驱风机次同步振荡抑制策略[J]. 中国电力, 2022, 55 (4): 175- 184. | 
| CAI Weizheng, GUO Kunli, LIU Luyu, et al. Subsynchronous oscillation mitigation strategy based on first-order LADRC for direct-drive wind turbines[J]. Electric Power, 2022, 55 (4): 175- 184. | |
| 12 | 程冲, 曾正, 汤胜清, 等. 复合功能并网逆变器的线性最优控制[J]. 电力自动化设备, 2016, 36 (1): 135- 142, 148. | 
| CHENG Chong, ZENG Zheng, TANG Shengqing, et al. Linear optimal control of multi-functional grid-connected inverter[J]. Electric Power Automation Equipment, 2016, 36 (1): 135- 142, 148. | |
| 13 |  
											石磊, 周宏涛, 赵元莘, 等. 光伏多功能并网逆变器迭代SMC+LADRC电流内环控制策略研究[J]. 智慧电力, 2023, 51 (4): 107- 114. 
																							 DOI  | 
										
|  
											SHI Lei, ZHOU Hongtao, ZHAO Yuanshen, et al. Iterative SMC+LADRC current inner loop control strategy of photovoltaic multi-function grid connected inverter[J]. Smart Power, 2023, 51 (4): 107- 114. 
																							 DOI  | 
										|
| 14 |  
											汤胜清, 曾正, 程冲, 等. 微电网中多功能并网逆变器的无线协调控制[J]. 电力系统自动化, 2015, 39 (9): 200- 207. 
																							 DOI  | 
										
|  
											TANG Shengqing, ZENG Zheng, CHENG Chong, et al. Wireless coordination control of multi-functional grid-tied inverters in microgrid[J]. Automation of Electric Power Systems, 2015, 39 (9): 200- 207. 
																							 DOI  | 
										|
| 15 |  
											宋振浩, 吕志鹏, 刘志涵, 等. 多功能并网逆变器电能质量优化控制策略[J]. 中国科技论文, 2022, 17 (3): 339- 347. 
																							 DOI  | 
										
|  
											SONG Zhenhao, LV Zhipeng, LIU Zhihan, et al. Power quality optimization control strategy of multi-function grid-connected inverter[J]. China Sciencepaper, 2022, 17 (3): 339- 347. 
																							 DOI  | 
										|
| 16 |  
											ZENG Z, YANG H, TANG S Q, et al. Objective-oriented power quality compensation of multifunctional grid-tied inverters and its application in microgrids[J]. IEEE Transactions on Power Electronics, 2015, 30 (3): 1255- 1265. 
																							 DOI  | 
										
| 17 | 刘人志, 陈卓, 唐文博, 等. 弱电网下计及锁相环影响的LCL型并网逆变器控制策略[J]. 电力系统保护与控制, 2022, 50 (5): 178- 187. | 
| LIU Renzhi, CHEN Zhuo, TANG Wenbo, et al. Control strategy of an LCL type grid-connected inverter with the influence of a phase-locked loop under a weak power grid[J]. Power System Protection and Control, 2022, 50 (5): 178- 187. | |
| 18 | 王威, 陈红敏, 金宇航, 等. 基于滑窗DFT算法的并网逆变器多目标协调控制方法[J]. 电力系统保护与控制, 2022, 50 (9): 145- 151. | 
| WANG Wei, CHEN Hongmin, JIN Yuhang, et al. Multi-objective coordinated control method of grid-connected inverter based on a sliding window DFT algorithm[J]. Power System Protection and Control, 2022, 50 (9): 145- 151. | |
| 19 | 常继凯, 舒勤, 李鸿鑫, 等. 计及电缆分布电容的并网逆变器谐振特性与抑制[J]. 电力科学与技术学报, 2023, 38 (3): 114- 123. | 
| CHANG Jikai, SHU Qin, LI Hongxin, et al. Resonance characteristics and suppression of grid-connected inverter system considering cable distributed capacitance[J]. Journal of Electric Power Science and Technology, 2023, 38 (3): 114- 123. | |
| 20 | 王毅, 高爱杰, 胡楠, 等. 多并网逆变器并联运行的谐振抑制策略[J]. 南方电网技术, 2022, 16 (5): 87- 96. | 
| WANG Yi, GAO Aijie, HU Nan, et al. Resonance suppression strategy for multi-parallel grid-connected inverters[J]. Southern Power System Technology, 2022, 16 (5): 87- 96. | |
| 21 | 苑忠奇, 金国彬. 基于系统导纳的并网逆变器谐振机理分析[J]. 东北电力大学学报, 2022, 42 (4): 79- 87. | 
| YUAN Zhongqi, JIN Guobin. Resonance mechanism analysis of grid-connected inverter based on system admittance[J]. Journal of Northeast Electric Power University, 2022, 42 (4): 79- 87. | |
| 22 | 李小叶, 李永丽, 张玮亚, 等. 基于多功能并网逆变器的电能质量控制策略[J]. 电网技术, 2015, 39 (2): 556- 562. | 
| LI Xiaoye, LI Yongli, ZHANG Weiya, et al. A power quality control strategy based on multi-functional grid-connected inverter[J]. Power System Technology, 2015, 39 (2): 556- 562. | |
| 23 | 刘子腾, 徐永海, 雷达, 等. 基于多层次模糊综合评判的谐波综合责任评估指标[J]. 电测与仪表, 2021, 58 (3): 1- 8. | 
| LIU Ziteng, XU Yonghai, LEI Da, et al. Harmonic comprehensive responsibility index based on multiple fuzzy comprehensive evaluation[J]. Electrical Measurement & Instrumentation, 2021, 58 (3): 1- 8. | |
| 24 | 吕志鹏, 吴鸣, 宋振浩, 等. 电能质量CRITIC-TOPSIS综合评价方法[J]. 电机与控制学报, 2020, 24 (1): 137- 144. | 
| LÜ Zhipeng, WU Ming, SONG Zhenhao, et al. Comprehensive evaluation of power quality on CRITIC-TOPSIS method[J]. Electric Machines and Control, 2020, 24 (1): 137- 144. | |
| 25 |  
											XIAO L L, LI F, NIU C, et al. Evaluation of water inrush hazard in coal seam roof based on the AHP-CRITIC composite weighted method[J]. Energies, 2022, 16 (1): 114. 
																							 DOI  | 
										
| [1] | FENG Xuan, KONG Xiangping, DU Xiaozhou, FEI Juntao, ZHANG Xianmeng, JIANG Qiuyu, LI Zhenxing. AC Filter Switching Combination Optimization Strategy for "AC-to-DC" System [J]. Electric Power, 2025, 58(9): 88-96. | 
| [2] | WANG Yong, WANG Hui, HU Yahan, Zhao Peng, LI Xuenan. Microgrid Optimization and Power Quality Improvement Based on Wind-Solar Hybrid Energy Storage System [J]. Electric Power, 2025, 58(7): 162-167. | 
| [3] | Shilong CHEN, Tao WU, Cheng GUO, Guihong BI, Yongliang QIAN. Harmonic Responsibility Division of Grid Asynchronous Monitoring Data Scenarios Based on Correlation Analysis [J]. Electric Power, 2025, 58(1): 15-25. | 
| [4] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. | 
| [5] | Shilong CHEN, Tao WU, Cheng GUO, Zirui ZHANG, Jinghao SUN. Division of Multi-harmonic Responsibilities Based on DBSCAN Clustering and Interval Regression [J]. Electric Power, 2024, 57(2): 138-148. | 
| [6] | Ting ZHOU, Yudong TAN, Jin SUN, Ming WEN, Jing LIAO, Yang LI, Gong LIU, Dunnan LIU. Collaborative Optimization Strategy for Virtual Power Plant Participating in Energy and Ancillary Service Market [J]. Electric Power, 2024, 57(1): 61-70. | 
| [7] | LI Tianchu, RONG Bin, WU Zhipeng, HUANG Jue, HUANG Kailai, YANG Gang, YI Yang. Suppression Strategy of Unintentional Emission Supraharmonic Based on Edge Computing for Wind Farms [J]. Electric Power, 2023, 56(8): 200-206,215. | 
| [8] | LU Zijing, LI Zishou, GUO Xiangguo, YANG Bo. Optimal Configuration of Electricity-Hydrogen Hybrid Energy Storage System Based on Multi-objective Artificial Hummingbird Algorithm [J]. Electric Power, 2023, 56(7): 33-42. | 
| [9] | CHEN Quan, ZONG Xuanjun, LI Mengyuan. Multi-objective Cooperative Optimization of Multi-heterogeneous Energy System Considering Energy Conservation [J]. Electric Power, 2023, 56(6): 148-157. | 
| [10] | Jiawei YANG, Yang YI, Hao JIANG, Lin ZHU, Zhiwei YAO. Principle of Supraharmonic Elimination Based on Random Carrier Sinusoidal Pulse Width Modulation for Converter Clusters [J]. Electric Power, 2023, 56(11): 160-167. | 
| [11] | YU Yongjun, XU Liguo, LIN Zijie, SUN Binghan, LIU Qiujiang, WU Zhensheng, REN Zhijie. Wide-Band Harmonic Impedance Measurement Device for Wind Grid Based on Cascaded H-Bridge Converter [J]. Electric Power, 2022, 55(11): 73-83. | 
| [12] | ZHANG Jian, YU Hao, LIANG Jianquan, WANG Yue, LIU Heqian. Power Quality Coupling Assessment Based on Data-Driven under Multiple Pollution Patterns [J]. Electric Power, 2022, 55(11): 84-90. | 
| [13] | WEN Caiquan, QUAN Jiexiong, ZHOU Kai, PAN Longbin, LI Cheng. Analysis on Influence of Large Capacity SVC Reactor on Low Voltage DC Power Supply for Station and Preventive Measures [J]. Electric Power, 2021, 54(12): 45-53. | 
| [14] | ZHONG Qing, YAO Weilin, XU Zhong, ZHOU Kai, WANG Gang. A System Assessment Method for Voltage Sag Severity Based on Average Point-To-Line Distance Index [J]. Electric Power, 2020, 53(11): 9-14. | 
| [15] | ZHUO Fang, YANG Zebin, YI Hao, YANG Guangyu, WANG Meng, YIN Xiaoqing, ZHU Chengzhi. Optimal Allocation Strategy for Power Quality Control Devices Based on Harmonic and Three-Phase Unbalance Comprehensive Evaluation Indices for Distribution Network [J]. Electric Power, 2020, 53(11): 40-49. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
