Electric Power ›› 2024, Vol. 57 ›› Issue (3): 113-125.DOI: 10.11930/j.issn.1004-9649.202310052
• Power System • Previous Articles Next Articles
Fan YANG1(), Shuiping WEI2(
), Yi REN2(
), Zilong CHEN2(
), Jian LE2(
)
Received:
2023-10-20
Accepted:
2024-01-18
Online:
2024-03-23
Published:
2024-03-28
Supported by:
Fan YANG, Shuiping WEI, Yi REN, Zilong CHEN, Jian LE. Multi-objective Collaborative Optimization Control Method of Composite Function Grid Connected Inverters Considering Variable Weight Hybrid Decision Evaluation[J]. Electric Power, 2024, 57(3): 113-125.
仿真模块 | 变量 | 参数值 | ||
PVMFGCI | 开关频率/Hz | 10 000 | ||
直流母线电压Udc/V | 700 | |||
滤波电感L/mH | 2 | |||
滤波电容C/μF | 10 | |||
阻尼电阻R/Ω | 4 | |||
并网功率跟踪指令 值Pg, Qg(kW, kV·A) | (18, 0)/(20, 0)/(16, 0) | |||
线路 | 线路的单位电阻/ (Ω·km–1) | 0.642 | ||
线路的单位电抗/ (Ω·km–1) | 0.083 | |||
配网电源 | 电压Us/V | 380 | ||
PCC1~3 非线性负荷 | R/Ω, L/H | 15, 0.005 | ||
20, 0.010 | ||||
25, 0.015 | ||||
PCC1~3 三相不平衡 负荷 | R/Ω, L/H | 2.9, 0.17/4, 0.079/1.6, 0.04 | ||
3.3, 0.14/4, 0.072/2.6, 0.035 | ||||
3.1, 0.12/4, 0.065/2.4, 0.046 | ||||
PCC1~3 三相平衡负荷 | R/Ω | (35, 35, 35)/(30, 30, 30)/ (25, 25, 25) | ||
DG1/DG2/DG3 | 指令值P/kW, Q/(kV·A) | (36, 0)/(32, 0)/(36, 0) |
Table 1 Simulation system parameters
仿真模块 | 变量 | 参数值 | ||
PVMFGCI | 开关频率/Hz | 10 000 | ||
直流母线电压Udc/V | 700 | |||
滤波电感L/mH | 2 | |||
滤波电容C/μF | 10 | |||
阻尼电阻R/Ω | 4 | |||
并网功率跟踪指令 值Pg, Qg(kW, kV·A) | (18, 0)/(20, 0)/(16, 0) | |||
线路 | 线路的单位电阻/ (Ω·km–1) | 0.642 | ||
线路的单位电抗/ (Ω·km–1) | 0.083 | |||
配网电源 | 电压Us/V | 380 | ||
PCC1~3 非线性负荷 | R/Ω, L/H | 15, 0.005 | ||
20, 0.010 | ||||
25, 0.015 | ||||
PCC1~3 三相不平衡 负荷 | R/Ω, L/H | 2.9, 0.17/4, 0.079/1.6, 0.04 | ||
3.3, 0.14/4, 0.072/2.6, 0.035 | ||||
3.1, 0.12/4, 0.065/2.4, 0.046 | ||||
PCC1~3 三相平衡负荷 | R/Ω | (35, 35, 35)/(30, 30, 30)/ (25, 25, 25) | ||
DG1/DG2/DG3 | 指令值P/kW, Q/(kV·A) | (36, 0)/(32, 0)/(36, 0) |
场景 | 设置 | |
1 | 0~0.1 s, PVMFGCI 1~3均不投入 | |
2 | 0.1~0.2 s,PVMFGCI 1~3分别补偿100%、80%和70%的谐波分量 | |
3 | 0.2~0.3 s,PVMFGCI 1~3均同时补偿全部谐波和不平衡分量 | |
4 | 0.3~0.4 s,PVMFGCI 1同时补偿全部谐波、不平衡分量以及60%的无功分量,PVMFGCI 2同时补偿全部谐波、不平衡分量以及70%的无功分量,PVMFGCI 3同时补偿全部谐波、不平衡分量以及80%的无功分量。 | |
5 | 0.4~0.5 s,PVMFGCI 1~3均完全补偿 | |
6 | 0.5~0.6 s,采用基于MOAHA的多目标优化补偿,多目标函数及决策变量按照3.1节原则设定,分别为各补偿点的电能质量综合指标最小、补偿容量最小及谐波畸变率、负序不平衡度、零序不平衡度、无功系数的补偿系数,MOAHA优化算法中种群设置为100,迭代次数为1 000,整体优化过程按照3.2中流程来实施 |
Table 2 Simulation scene settings
场景 | 设置 | |
1 | 0~0.1 s, PVMFGCI 1~3均不投入 | |
2 | 0.1~0.2 s,PVMFGCI 1~3分别补偿100%、80%和70%的谐波分量 | |
3 | 0.2~0.3 s,PVMFGCI 1~3均同时补偿全部谐波和不平衡分量 | |
4 | 0.3~0.4 s,PVMFGCI 1同时补偿全部谐波、不平衡分量以及60%的无功分量,PVMFGCI 2同时补偿全部谐波、不平衡分量以及70%的无功分量,PVMFGCI 3同时补偿全部谐波、不平衡分量以及80%的无功分量。 | |
5 | 0.4~0.5 s,PVMFGCI 1~3均完全补偿 | |
6 | 0.5~0.6 s,采用基于MOAHA的多目标优化补偿,多目标函数及决策变量按照3.1节原则设定,分别为各补偿点的电能质量综合指标最小、补偿容量最小及谐波畸变率、负序不平衡度、零序不平衡度、无功系数的补偿系数,MOAHA优化算法中种群设置为100,迭代次数为1 000,整体优化过程按照3.2中流程来实施 |
PCC | C1 | C2 | C3 | C4 | ||||
1 | 0.1 815 | 0.1 267 | 0.2 443 | 0.3 458 | ||||
2 | 0.1 664 | 0.1 083 | 0.1 859 | 0.2 939 | ||||
3 | 0.1 298 | 0.0 713 | 0.1 308 | 0.2 738 |
Table 3 Power quality indicators without compensation
PCC | C1 | C2 | C3 | C4 | ||||
1 | 0.1 815 | 0.1 267 | 0.2 443 | 0.3 458 | ||||
2 | 0.1 664 | 0.1 083 | 0.1 859 | 0.2 939 | ||||
3 | 0.1 298 | 0.0 713 | 0.1 308 | 0.2 738 |
1 | 江悦, 曹旌, 梁刚, 等. 光伏并网逆变器谐波特性分析与谐波电流抑制[J]. 电力系统及其自动化学报, 2022, 34 (9): 64- 72. |
JIANG Yue, CAO Jing, LIANG Gang, et al. Analysis of harmonic characteristics and suppression of harmonic current for photovoltaic grid-connected inverter[J]. Proceedings of the CSU-EPSA, 2022, 34 (9): 64- 72. | |
2 | 黄海宏, 郑小朋, 王海欣. 三相四线制有源电力滤波器均压环优化设计[J]. 电力自动化设备, 2020, 40 (7): 103- 107. |
HUANG Haihong, ZHENG Xiaopeng, WANG Haixin. Optimal design of voltage-balance loop for three-phase four-wire APF[J]. Electric Power Automation Equipment, 2020, 40 (7): 103- 107. | |
3 |
ZHAI H, ZHUO F, ZHU C Z, et al. An optimal compensation method of shunt active power filters for system-wide voltage quality improvement[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (2): 1270- 1281.
DOI |
4 | 薛飞, 李旭涛, 李宏强, 等. 基于双侧电压反馈控制策略的并网光伏系统电压稳定性研究[J]. 中国电力, 2022, 55 (9): 183- 191, 203. |
XUE Fei, LI Xutao, LI Hongqiang, et al. Research on voltage stability of grid-connected photovoltaic system based on double-side voltage feedback control[J]. Electric Power, 2022, 55 (9): 183- 191, 203. | |
5 | 张茜, 毛义鹏, 余乐, 等. 适用于无直流侧电压传感器单相级联H桥型光伏逆变器的直接功率模型预测控制方法[J]. 中国电力, 2022, 55 (2): 172- 180. |
ZHANG Qian, MAO Yipeng, YU Le, et al. Direct power model predictive control method for DC-side sensor-less single-phase cascaded H-bridges photovoltaic inverters[J]. Electric Power, 2022, 55 (2): 172- 180. | |
6 | 孙广宇, 李永丽, 靳伟, 等. 基于三相多功能逆变器的微电网电能质量综合治理策略[J]. 电网技术, 2019, 43 (4): 1211- 1221. |
SUN Guangyu, LI Yongli, JIN Wei, et al. A comprehensive power quality control strategy for microgrid based on three-phase multi-function inverters[J]. Power System Technology, 2019, 43 (4): 1211- 1221. | |
7 | 靳伟, 李永丽, 卜立之, 等. 基于CPT理论和重复控制的多功能并网逆变器研究[J]. 电工技术学报, 2018, 33 (18): 4345- 4356. |
JIN Wei, LI Yongli, BU Lizhi, et al. Research on multi-functional grid-connected inverters based on conservative power theory and repetitive control[J]. Transactions of China Electrotechnical Society, 2018, 33 (18): 4345- 4356. | |
8 | 黄龑, 郝迎鹏, 汪慧娴, 等. 基于二阶统一模型的分布式发电并网同步控制研究[J]. 中国电力, 2023, 56 (12): 41- 50. |
HUANG Yan, HAO Yingpeng, WANG Huixian, et al. Research on synchronization control of distributed generation based on second-order unified model[J]. Electric Power, 2023, 56 (12): 41- 50. | |
9 | ALGADDAFI A, ALTUWAYJIRI S A, AHMED O A, et al. An optimal current controller design for a grid connected inverter to improve power quality and test commercial PV inverters[J]. The Scientific World Journal, 2017, 2017, 1393476. |
10 | 周子轩, 王果, 王久珲. 不同电流检测方法对并网逆变器用于电能质量治理的比较分析[J]. 电力电容器与无功补偿, 2020, 41 (1): 169- 175. |
ZHOU Zixuan, WANG Guo, WANG Jiuhui. Comparative analysis of different current detection methods for power quality control of grid-connected inverters[J]. Power Capacitor & Reactive Power Compensation, 2020, 41 (1): 169- 175. | |
11 | 蔡维正, 郭昆丽, 刘璐雨, 等. 基于一阶LADRC控制的直驱风机次同步振荡抑制策略[J]. 中国电力, 2022, 55 (4): 175- 184. |
CAI Weizheng, GUO Kunli, LIU Luyu, et al. Subsynchronous oscillation mitigation strategy based on first-order LADRC for direct-drive wind turbines[J]. Electric Power, 2022, 55 (4): 175- 184. | |
12 | 程冲, 曾正, 汤胜清, 等. 复合功能并网逆变器的线性最优控制[J]. 电力自动化设备, 2016, 36 (1): 135- 142, 148. |
CHENG Chong, ZENG Zheng, TANG Shengqing, et al. Linear optimal control of multi-functional grid-connected inverter[J]. Electric Power Automation Equipment, 2016, 36 (1): 135- 142, 148. | |
13 |
石磊, 周宏涛, 赵元莘, 等. 光伏多功能并网逆变器迭代SMC+LADRC电流内环控制策略研究[J]. 智慧电力, 2023, 51 (4): 107- 114.
DOI |
SHI Lei, ZHOU Hongtao, ZHAO Yuanshen, et al. Iterative SMC+LADRC current inner loop control strategy of photovoltaic multi-function grid connected inverter[J]. Smart Power, 2023, 51 (4): 107- 114.
DOI |
|
14 |
汤胜清, 曾正, 程冲, 等. 微电网中多功能并网逆变器的无线协调控制[J]. 电力系统自动化, 2015, 39 (9): 200- 207.
DOI |
TANG Shengqing, ZENG Zheng, CHENG Chong, et al. Wireless coordination control of multi-functional grid-tied inverters in microgrid[J]. Automation of Electric Power Systems, 2015, 39 (9): 200- 207.
DOI |
|
15 |
宋振浩, 吕志鹏, 刘志涵, 等. 多功能并网逆变器电能质量优化控制策略[J]. 中国科技论文, 2022, 17 (3): 339- 347.
DOI |
SONG Zhenhao, LV Zhipeng, LIU Zhihan, et al. Power quality optimization control strategy of multi-function grid-connected inverter[J]. China Sciencepaper, 2022, 17 (3): 339- 347.
DOI |
|
16 |
ZENG Z, YANG H, TANG S Q, et al. Objective-oriented power quality compensation of multifunctional grid-tied inverters and its application in microgrids[J]. IEEE Transactions on Power Electronics, 2015, 30 (3): 1255- 1265.
DOI |
17 | 刘人志, 陈卓, 唐文博, 等. 弱电网下计及锁相环影响的LCL型并网逆变器控制策略[J]. 电力系统保护与控制, 2022, 50 (5): 178- 187. |
LIU Renzhi, CHEN Zhuo, TANG Wenbo, et al. Control strategy of an LCL type grid-connected inverter with the influence of a phase-locked loop under a weak power grid[J]. Power System Protection and Control, 2022, 50 (5): 178- 187. | |
18 | 王威, 陈红敏, 金宇航, 等. 基于滑窗DFT算法的并网逆变器多目标协调控制方法[J]. 电力系统保护与控制, 2022, 50 (9): 145- 151. |
WANG Wei, CHEN Hongmin, JIN Yuhang, et al. Multi-objective coordinated control method of grid-connected inverter based on a sliding window DFT algorithm[J]. Power System Protection and Control, 2022, 50 (9): 145- 151. | |
19 | 常继凯, 舒勤, 李鸿鑫, 等. 计及电缆分布电容的并网逆变器谐振特性与抑制[J]. 电力科学与技术学报, 2023, 38 (3): 114- 123. |
CHANG Jikai, SHU Qin, LI Hongxin, et al. Resonance characteristics and suppression of grid-connected inverter system considering cable distributed capacitance[J]. Journal of Electric Power Science and Technology, 2023, 38 (3): 114- 123. | |
20 | 王毅, 高爱杰, 胡楠, 等. 多并网逆变器并联运行的谐振抑制策略[J]. 南方电网技术, 2022, 16 (5): 87- 96. |
WANG Yi, GAO Aijie, HU Nan, et al. Resonance suppression strategy for multi-parallel grid-connected inverters[J]. Southern Power System Technology, 2022, 16 (5): 87- 96. | |
21 | 苑忠奇, 金国彬. 基于系统导纳的并网逆变器谐振机理分析[J]. 东北电力大学学报, 2022, 42 (4): 79- 87. |
YUAN Zhongqi, JIN Guobin. Resonance mechanism analysis of grid-connected inverter based on system admittance[J]. Journal of Northeast Electric Power University, 2022, 42 (4): 79- 87. | |
22 | 李小叶, 李永丽, 张玮亚, 等. 基于多功能并网逆变器的电能质量控制策略[J]. 电网技术, 2015, 39 (2): 556- 562. |
LI Xiaoye, LI Yongli, ZHANG Weiya, et al. A power quality control strategy based on multi-functional grid-connected inverter[J]. Power System Technology, 2015, 39 (2): 556- 562. | |
23 | 刘子腾, 徐永海, 雷达, 等. 基于多层次模糊综合评判的谐波综合责任评估指标[J]. 电测与仪表, 2021, 58 (3): 1- 8. |
LIU Ziteng, XU Yonghai, LEI Da, et al. Harmonic comprehensive responsibility index based on multiple fuzzy comprehensive evaluation[J]. Electrical Measurement & Instrumentation, 2021, 58 (3): 1- 8. | |
24 | 吕志鹏, 吴鸣, 宋振浩, 等. 电能质量CRITIC-TOPSIS综合评价方法[J]. 电机与控制学报, 2020, 24 (1): 137- 144. |
LÜ Zhipeng, WU Ming, SONG Zhenhao, et al. Comprehensive evaluation of power quality on CRITIC-TOPSIS method[J]. Electric Machines and Control, 2020, 24 (1): 137- 144. | |
25 |
XIAO L L, LI F, NIU C, et al. Evaluation of water inrush hazard in coal seam roof based on the AHP-CRITIC composite weighted method[J]. Energies, 2022, 16 (1): 114.
DOI |
[1] | Shilong CHEN, Tao WU, Cheng GUO, Guihong BI, Yongliang QIAN. Harmonic Responsibility Division of Grid Asynchronous Monitoring Data Scenarios Based on Correlation Analysis [J]. Electric Power, 2025, 58(1): 15-25. |
[2] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. |
[3] | Shilong CHEN, Tao WU, Cheng GUO, Zirui ZHANG, Jinghao SUN. Division of Multi-harmonic Responsibilities Based on DBSCAN Clustering and Interval Regression [J]. Electric Power, 2024, 57(2): 138-148. |
[4] | Ting ZHOU, Yudong TAN, Jin SUN, Ming WEN, Jing LIAO, Yang LI, Gong LIU, Dunnan LIU. Collaborative Optimization Strategy for Virtual Power Plant Participating in Energy and Ancillary Service Market [J]. Electric Power, 2024, 57(1): 61-70. |
[5] | LI Tianchu, RONG Bin, WU Zhipeng, HUANG Jue, HUANG Kailai, YANG Gang, YI Yang. Suppression Strategy of Unintentional Emission Supraharmonic Based on Edge Computing for Wind Farms [J]. Electric Power, 2023, 56(8): 200-206,215. |
[6] | LU Zijing, LI Zishou, GUO Xiangguo, YANG Bo. Optimal Configuration of Electricity-Hydrogen Hybrid Energy Storage System Based on Multi-objective Artificial Hummingbird Algorithm [J]. Electric Power, 2023, 56(7): 33-42. |
[7] | CHEN Quan, ZONG Xuanjun, LI Mengyuan. Multi-objective Cooperative Optimization of Multi-heterogeneous Energy System Considering Energy Conservation [J]. Electric Power, 2023, 56(6): 148-157. |
[8] | Jiawei YANG, Yang YI, Hao JIANG, Lin ZHU, Zhiwei YAO. Principle of Supraharmonic Elimination Based on Random Carrier Sinusoidal Pulse Width Modulation for Converter Clusters [J]. Electric Power, 2023, 56(11): 160-167. |
[9] | YU Yongjun, XU Liguo, LIN Zijie, SUN Binghan, LIU Qiujiang, WU Zhensheng, REN Zhijie. Wide-Band Harmonic Impedance Measurement Device for Wind Grid Based on Cascaded H-Bridge Converter [J]. Electric Power, 2022, 55(11): 73-83. |
[10] | ZHANG Jian, YU Hao, LIANG Jianquan, WANG Yue, LIU Heqian. Power Quality Coupling Assessment Based on Data-Driven under Multiple Pollution Patterns [J]. Electric Power, 2022, 55(11): 84-90. |
[11] | WEN Caiquan, QUAN Jiexiong, ZHOU Kai, PAN Longbin, LI Cheng. Analysis on Influence of Large Capacity SVC Reactor on Low Voltage DC Power Supply for Station and Preventive Measures [J]. Electric Power, 2021, 54(12): 45-53. |
[12] | ZHONG Qing, YAO Weilin, XU Zhong, ZHOU Kai, WANG Gang. A System Assessment Method for Voltage Sag Severity Based on Average Point-To-Line Distance Index [J]. Electric Power, 2020, 53(11): 9-14. |
[13] | ZHUO Fang, YANG Zebin, YI Hao, YANG Guangyu, WANG Meng, YIN Xiaoqing, ZHU Chengzhi. Optimal Allocation Strategy for Power Quality Control Devices Based on Harmonic and Three-Phase Unbalance Comprehensive Evaluation Indices for Distribution Network [J]. Electric Power, 2020, 53(11): 40-49. |
[14] | SHENG Siqing, WANG Jiaqi. Power Quality Transient Disturbance Detection Based on Improved QPSO Morphological Filter [J]. Electric Power, 2017, 50(6): 95-100. |
[15] | GONG Cheng, WANG Wei, MA Longfei, ZHANG Baoqun, JIAO Ran, DING Yifeng, CHEN Jianshu, YANG Shuo. Research on the Application of UPQC in Power Quality Control of Electric Vehicle Charging Station [J]. Electric Power, 2017, 50(6): 165-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||