Electric Power ›› 2020, Vol. 53 ›› Issue (11): 9-14.DOI: 10.11930/j.issn.1004-9649.202006095
Previous Articles Next Articles
ZHONG Qing1, YAO Weilin1, XU Zhong2, ZHOU Kai2, WANG Gang1
Received:
2020-06-08
Revised:
2020-09-18
Online:
2020-11-05
Published:
2020-11-05
ZHONG Qing, YAO Weilin, XU Zhong, ZHOU Kai, WANG Gang. A System Assessment Method for Voltage Sag Severity Based on Average Point-To-Line Distance Index[J]. Electric Power, 2020, 53(11): 9-14.
[1] 吴丹岳. 基于直觉模糊粗糙集相似度的电压暂降源定位方法[J]. 中国电力, 2017, 50(3): 128-132, 136 WU Danyue. Voltage sag source locating method based on similarity measure of intuitionistic fuzzy rough sets[J]. Electric Power, 2017, 50(3): 128-132, 136 [2] ARIAS-GUZMÁN S, RUIZ-GUZMÁN O A, GARCIA-ARÍAS L F, et al. Analysis of voltage sag severity case study in an industrial circuit[J]. IEEE Transactions on Industry Applications, 2017, 53(1): 15-21. [3] 钟庆, 何淇彰, 陈伟坤, 等. 基于甘特图的过程免疫时间计算方法[J]. 电力系统自动化, 2019, 43(7): 174-181 ZHONG Qing, HE Qizhang, CHEN Weikun, et al. Gantt chart based calculation method for process immunity time[J]. Automation of Electric Power Systems, 2019, 43(7): 174-181 [4] 徐永海, 洪旺松, 兰巧倩. 电压暂降起始点与相位跳变对交流接触器影响的分析[J]. 电力系统自动化, 2016, 40(4): 92-97, 135 XU Yonghai, HONG Wangsong, LAN Qiaoqian. Influence analysis of point-on-wave of voltage sag initiation and sag phase jump on alternating current contactor[J]. Automation of Electric Power Systems, 2016, 40(4): 92-97, 135 [5] 吕干云, 蒋小伟, 郝思鹏, 等. 基于半监督支持向量机的电压暂降源定位[J]. 电力系统保护与控制, 2019, 47(18): 76-81 LÜ Ganyun, JIANG Xiaowei, HAO Sipeng, et al. Location of voltage sag source based on semi-supervised SVM[J]. Power System Protection and Control, 2019, 47(18): 76-81 [6] RAVI P, MOHAN B, HEMAKESHAVULU O. Optimal placement of dstatcom for voltage sag mitigation using an anfis based approach for power quality enhancement[J]. International Journal of Electrical Electronics & Data Communication, 2014, 2(1): 1-8. [7] 刘旭娜, 肖先勇, 汪颖. 电压暂降严重程度及其测度、不确定性评估方法[J]. 中国电机工程学报, 2014, 34(4): 644-658 LIU Xuna, XIAO Xianyong, WANG Ying. Voltage sag severity and its measure and uncertainty evaluation[J]. Proceedings of the CSEE, 2014, 34(4): 644-658 [8] 林芳, 肖先勇, 张逸, 等. 基于暂降信息的监测装置优化配置与系统电压暂降水平评估[J]. 电力自动化设备, 2016, 36(5): 67-73 LIN Fang, XIAO Xianyong, ZHANG Yi, et al. Optimal monitor allocation and system sag level assessment based on sag information[J]. Electric Power Automation Equipment, 2016, 36(5): 67-73 [9] 卢文清, 常乾坤, 贾东强, 等. 设备侧电压暂降严重程度评估方法研究[J]. 电力自动化设备, 2019, 39(1): 175-182 LU Wenqing, CHANG Qiankun, JIA Dongqiang, et al. Research on evaluation methods of voltage sag severity for equipment side[J]. Electric Power Automation Equipment, 2019, 39(1): 175-182 [10] 赵莹, 赵川, 叶华, 等. 应用主成分分析约简电压暂降扰动源识别特征的方法[J]. 电力系统保护与控制, 2015, 43(13): 105-110 ZHAO Ying, ZHAO Chuan, YE Hua, et al. Method to reduce identification feature of different voltage sag disturbance source based on principal component analysis[J]. Power System Protection and Control, 2015, 43(13): 105-110 [11] LU C N, SHEN C C. Estimation of sensitive equipment disruptions due to voltage sags[J]. IEEE Transactions on Power Delivery, 2007, 22(2): 1132-1137. [12] IEEE Guide for Voltage Sag Indices: IEEE Std 1564TM-2014[S]. 2014. [13] 司学振, 李琼林, 杨家莉, 等. 基于实测数据的电压暂降特性分析[J]. 电力自动化设备, 2017, 37(12): 144-149 SI Xuezhen, LI Qionglin, YANG Jiali, et al. Analysis of voltage sag characteristics based on measured data[J]. Electric Power Automation Equipment, 2017, 37(12): 144-149 [14] 杨家莉, 徐永海. 基于组合赋权与TOPSIS模型的节点电压暂降严重程度综合评估方法[J]. 电力系统保护与控制, 2017, 45(18): 88-95 YANG Jiali, XU Yonghai. Comprehensive evaluation method of node voltage sag severity based on TOPSIS model and combination weights[J]. Power System Protection and Control, 2017, 45(18): 88-95 [15] 周翔, 王丰华, 黄荣辉, 等. 考虑系统与敏感设备的变电站电压暂降综合评估[J]. 中国电机工程学报, 2015, 35(8): 1940-1946 ZHOU Xiang, WANG Fenghua, HUANG Ronghui, et al. Assessment of voltage sags in substations based on power system and equipment sensitivity analysis[J]. Proceedings of the CSEE, 2015, 35(8): 1940-1946 [16] GARCÍA-SÁNCHEZ T, GÓMEZ-LÁZARO E, MULJADI E, et al. Statistical and clustering analysis for disturbances: a case study of voltage dips in wind farms[J]. IEEE Transactions on Power Delivery, 2016, 31(6): 2530-2537. [17] 许中, 莫文雄, 张哲, 等. 城市电网电压暂降事件聚类分析[J]. 供用电, 2018, 35(2): 31-35 XU Zhong, MO Wenxiong, ZHANG Zhe, et al. Clustering analysis of voltage sags in the urban power networks[J]. Distribution & Utilization, 2018, 35(2): 31-35 [18] GARCÍA-SÁNCHEZ T, GÓMEZ-LÁZARO E, MULJADI E, et al. Approach to fitting parameters and clustering for characterising measured voltage dips based on two-dimensional polarisation ellipses[J]. IET Renewable Power Generation, 2017, 11(10): 1335-1343. [19] 章坚民, 申世伟, 黄晟, 等. 变电站为中心配电网电压等高线时序态势图片的聚类分析[J]. 电力系统自动化, 2017, 41(8): 125-132 ZHANG Jianmin, SHEN Shiwei, HUANG Sheng, et al. Clustering analysis of voltage contour time-sequence situation pictures in substation-centralized distribution network[J]. Automation of Electric Power Systems, 2017, 41(8): 125-132 [20] 胡伟. 改进的层次K均值聚类算法[J]. 计算机工程与应用, 2013, 49(2): 157-159 HU Wei. Improved hierarchical K-means clustering algorithm[J]. Computer Engineering and Applications, 2013, 49(2): 157-159 |
[1] | Shilong CHEN, Tao WU, Cheng GUO, Guihong BI, Yongliang QIAN. Harmonic Responsibility Division of Grid Asynchronous Monitoring Data Scenarios Based on Correlation Analysis [J]. Electric Power, 2025, 58(1): 15-25. |
[2] | Fan YANG, Shuiping WEI, Yi REN, Zilong CHEN, Jian LE. Multi-objective Collaborative Optimization Control Method of Composite Function Grid Connected Inverters Considering Variable Weight Hybrid Decision Evaluation [J]. Electric Power, 2024, 57(3): 113-125. |
[3] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. |
[4] | Shilong CHEN, Tao WU, Cheng GUO, Zirui ZHANG, Jinghao SUN. Division of Multi-harmonic Responsibilities Based on DBSCAN Clustering and Interval Regression [J]. Electric Power, 2024, 57(2): 138-148. |
[5] | LI Tianchu, RONG Bin, WU Zhipeng, HUANG Jue, HUANG Kailai, YANG Gang, YI Yang. Suppression Strategy of Unintentional Emission Supraharmonic Based on Edge Computing for Wind Farms [J]. Electric Power, 2023, 56(8): 200-206,215. |
[6] | ZHAO Yangyang, LIU Lan, ZHAO Wei, ZENG Shuang, LIANG Anqi, WANG Hanqiu, MA Kai. Heat Pump Temperature Trajectory Planning Algorithm for Bus Voltage Sag Suppression [J]. Electric Power, 2023, 56(5): 99-107. |
[7] | Jiawei YANG, Yang YI, Hao JIANG, Lin ZHU, Zhiwei YAO. Principle of Supraharmonic Elimination Based on Random Carrier Sinusoidal Pulse Width Modulation for Converter Clusters [J]. Electric Power, 2023, 56(11): 160-167. |
[8] | ZHU Mingxing, LU Xuan, ZHANG Huaying, WANG Qing. Safe Operation Area of Energy-Storage-Free Dynamic Voltage Restorer [J]. Electric Power, 2022, 55(8): 157-164. |
[9] | ZHOU Wen, LIANG Jifeng, JIAO Yadong, LI Tiecheng, LU Yanqiao, LIU Yong. Error Analysis and Correction of Voltage Sag Measurement for Capacitor Voltage Transformer [J]. Electric Power, 2022, 55(7): 49-58. |
[10] | LV Jinbing, YANG Guochao, FAN Xingguan. A Voltage Sag Prevention Index Based on Virtual Upper and Lower Limit Tolerance Curve [J]. Electric Power, 2022, 55(7): 59-66,73. |
[11] | LIU Haitao, YE Xiaoyi, Lü Ganyun, YUAN Huajun, GENG Zongpu. Identification of Voltage Sag Source in Distribution Network Based on BAS-SVM [J]. Electric Power, 2022, 55(5): 128-133. |
[12] | LI Pei, YU Yongjun, MA Zhiquan, CAI Chongkai. High Quality Power Supply Service Mode Considering Service Life of Mitigation Equipment Against Voltage Sag [J]. Electric Power, 2022, 55(12): 147-159. |
[13] | HE Yedan, XIA Xiangyang, YIN Xu, DENG Wenhua, WANG Can, XIONG Fuqiang, ZHOU Hanliang. MMC Coordinated Control Strategy for Maximum Power Output Under Asymmetric Voltage Sag [J]. Electric Power, 2022, 55(12): 160-167. |
[14] | YU Yongjun, XU Liguo, LIN Zijie, SUN Binghan, LIU Qiujiang, WU Zhensheng, REN Zhijie. Wide-Band Harmonic Impedance Measurement Device for Wind Grid Based on Cascaded H-Bridge Converter [J]. Electric Power, 2022, 55(11): 73-83. |
[15] | ZHANG Jian, YU Hao, LIANG Jianquan, WANG Yue, LIU Heqian. Power Quality Coupling Assessment Based on Data-Driven under Multiple Pollution Patterns [J]. Electric Power, 2022, 55(11): 84-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||