Electric Power ›› 2024, Vol. 57 ›› Issue (2): 127-137.DOI: 10.11930/j.issn.1004-9649.202308069
• Power System • Previous Articles Next Articles
Zikang ZHOU(), Shun TAO(
), Chaofan XUE, Wei YUAN, Yonghai XU
Received:
2023-08-17
Accepted:
2023-11-15
Online:
2024-02-23
Published:
2024-02-28
Supported by:
Zikang ZHOU, Shun TAO, Chaofan XUE, Wei YUAN, Yonghai XU. Key Resonance Component Evaluation of Medium-Voltage Power Systems[J]. Electric Power, 2024, 57(2): 127-137.
节点 | 参与因子 | 电压平方 | 电压平方占比 | |||
1 | 0.00232 | 66203.3 | 0.00259 | |||
2 | 0.20432 | 5184729.0 | 0.20274 | |||
3 | 0.79348 | 20322064.0 | 0.79467 |
Table 1 The participates in factor and voltage square ratio of each node
节点 | 参与因子 | 电压平方 | 电压平方占比 | |||
1 | 0.00232 | 66203.3 | 0.00259 | |||
2 | 0.20432 | 5184729.0 | 0.20274 | |||
3 | 0.79348 | 20322064.0 | 0.79467 |
模态 | 谐振频次 | 谐振频率/Hz | 最大参与 因子母线 | 最大参与因子 | ||||
1 | 3.84 | 192 | 2 | 0.1033 | ||||
2 | 13.08 | 654 | 3 | 0.3653 | ||||
3 | 17.54 | 877 | 13 | 0.6615 | ||||
4 | 63.80 | 3190 | 6 | 0.0979 |
Table 2 The resonance mode information of the system
模态 | 谐振频次 | 谐振频率/Hz | 最大参与 因子母线 | 最大参与因子 | ||||
1 | 3.84 | 192 | 2 | 0.1033 | ||||
2 | 13.08 | 654 | 3 | 0.3653 | ||||
3 | 17.54 | 877 | 13 | 0.6615 | ||||
4 | 63.80 | 3190 | 6 | 0.0979 |
元器件 | 基频电流 有效值(p.u.) | 谐振电流 有效值(p.u.) | 电流响应比 | |||
VSC2 | 0.003 | 42.781 | 12582.65 | |||
变压器ZT3 | 1.003 | 42.043 | 41.90 | |||
支路10-11电缆 | 0.327 | 0.908 | 2.78 | |||
支路5-11电缆 | 0.486 | 20.234 | 41.64 | |||
支路4-5电缆 | 0.217 | 11.226 | 51.66 | |||
VSC1 | 0.001 | 1.891 | 2480.98 | |||
支路5-6电缆 | 0.454 | 82.850 | 182.65 | |||
变压器ZT1 | 0.067 | 8.025 | 119.42 | |||
支路7-8架空线 | 0.025 | 0.767 | 30.42 |
Table 3 Current amplification response ratio on some devices
元器件 | 基频电流 有效值(p.u.) | 谐振电流 有效值(p.u.) | 电流响应比 | |||
VSC2 | 0.003 | 42.781 | 12582.65 | |||
变压器ZT3 | 1.003 | 42.043 | 41.90 | |||
支路10-11电缆 | 0.327 | 0.908 | 2.78 | |||
支路5-11电缆 | 0.486 | 20.234 | 41.64 | |||
支路4-5电缆 | 0.217 | 11.226 | 51.66 | |||
VSC1 | 0.001 | 1.891 | 2480.98 | |||
支路5-6电缆 | 0.454 | 82.850 | 182.65 | |||
变压器ZT1 | 0.067 | 8.025 | 119.42 | |||
支路7-8架空线 | 0.025 | 0.767 | 30.42 |
节点 | 电压响应比 | 节点 | 电压响应比 | |||
1 | 0.61 | 8 | 27.71 | |||
2 | 2.72 | 9 | 2.02 | |||
3 | 89.92 | 10 | 2.72 | |||
4 | 29.37 | 11 | 113.35 | |||
5 | 43.99 | 12 | 139.72 | |||
6 | 2.72 | 13 | 718.77 | |||
7 | 14.52 |
Table 4 Node voltage amplification response ratio in resonant mode
节点 | 电压响应比 | 节点 | 电压响应比 | |||
1 | 0.61 | 8 | 27.71 | |||
2 | 2.72 | 9 | 2.02 | |||
3 | 89.92 | 10 | 2.72 | |||
4 | 29.37 | 11 | 113.35 | |||
5 | 43.99 | 12 | 139.72 | |||
6 | 2.72 | 13 | 718.77 | |||
7 | 14.52 |
模态 | 谐振频次 | 谐振频率/Hz | 关键元件 | |||
1 | 3.84 | 192 | 变压器1、负荷7、负荷8、节点1-2、1-6、2-6间电缆 | |||
2 | 13.08 | 654 | 节点2处电容补偿、变压器1、变压器2、节点1-2间电缆 | |||
3 | 17.54 | 877 | 变压器1、变压器3、VSC1、VSC2 | |||
4 | 63.80 | 3190 | 变压器2、变压器3、负荷5、负荷7、负荷8、节点1-6间电缆 |
Table 5 Key element of resonance in each mode
模态 | 谐振频次 | 谐振频率/Hz | 关键元件 | |||
1 | 3.84 | 192 | 变压器1、负荷7、负荷8、节点1-2、1-6、2-6间电缆 | |||
2 | 13.08 | 654 | 节点2处电容补偿、变压器1、变压器2、节点1-2间电缆 | |||
3 | 17.54 | 877 | 变压器1、变压器3、VSC1、VSC2 | |||
4 | 63.80 | 3190 | 变压器2、变压器3、负荷5、负荷7、负荷8、节点1-6间电缆 |
1 | 李朝阳. 电力系统谐波谐振概率评估方法研究[D]. 成都: 西南交通大学, 2020. |
LI Zhaoyang. Study on probabiistic assessment methods of harmonic resonance in power systems[D]. Chengdu: Southwest Jiaotong University, 2020. | |
2 | 何正友. 分布式新能源接入电网的谐波热点问题探讨[J]. 南方电网技术, 2016, 10 (3): 47- 52. |
HE Zhengyou. Discussion on harmonic hot issues of distributed new energy connected to power grid[J]. Southern Power System Technology, 2016, 10 (3): 47- 52. | |
3 | 刘洪, 李其哲, 徐晶, 等. 网孔型中压配电网组网形态、核心特征与研究展望[J]. 电力系统自动化, 2023, 47 (16): 181- 191. |
LIU Hong, LI Qizhe, XU Jing, et al. Networking morphology, key feature and research prospect of mesh-type medium-voltage distribution network[J]. Automation of Electric Power Systems, 2023, 47 (16): 181- 191. | |
4 | 窦真兰, 张春雁, 赵慧荣, 等. 含氢能汽车负荷的住宅光-氢耦合能源系统容量优化配置[J]. 中国电力, 2023, 56 (7): 54- 65. |
DOU Zhenlan, ZHANG Chunyan, ZHAO Huirong, et al. Optimal capacity configuration of residential solar-hydrogen coupling energy system with hydrogen vehicle load[J]. Electric Power, 2023, 56 (7): 54- 65. | |
5 | 韩华春, 李强, 袁晓冬. 考虑柔性氢需求的区域综合能源系统优化调度方法[J]. 电力科学与技术学报, 2022, 37 (3): 12- 18. |
HAN Huachun, LI Qiang, YUAN Xiaodong. Optimal dispatch of regional integrated energy systems considering flexible hydrogen demand[J]. Journal of Electric Power Science and Technology, 2022, 37 (3): 12- 18. | |
6 | 王鹏飞, 李世民, 张磊, 等. 基于合作博弈的风-光-综合能源系统多主体协同运行策略[J]. 智慧电力, 2023, 51 (9): 52- 59. |
WANG Pengfei, LI Shimin, ZHANG Lei, et al. Multi-agent cooperative operation strategy of wind-photovoltaic-integrated energy system based on cooperative game[J]. Smart Power, 2023, 51 (9): 52- 59. | |
7 | 毕锐, 王孝淦, 袁华凯, 等. 考虑供需双侧响应和碳交易的氢能综合能源系统鲁棒调度[J]. 电力系统保护与控制, 2023, 51 (12): 122- 132. |
BI Rui, WANG Xiaogan, YUAN Huakai, et al. Robust dispatch of a hydrogen integrated energy system considering double side response and carbon trading mechanism[J]. Power System Protection and Control, 2023, 51 (12): 122- 132. | |
8 | 蔡含虎, 向月, 杨昕然. 计及需求响应的综合能源系统容量经济配置及效益分析[J]. 电力自动化设备, 2019, 39 (8): 186- 194. |
CAI Hanhu, XIANG Yue, YANG Xinran. Economic capacity allocation and benefit analysis of integrated energy system considering demand response[J]. Electric Power Automation Equipment, 2019, 39 (8): 186- 194. | |
9 | 郑伟民, 王蕾, 孙可, 等. 考虑多能流广义储能作用的配电网协调规划[J]. 电力自动化设备, 2021, 41 (7): 22- 30. |
ZHENG Weimin, WANG Lei, SUN Ke, et al. Coordinated planning of distribution network considering function of multi-energy flow generalized energy storage[J]. Electric Power Automation Equipment, 2021, 41 (7): 22- 30. | |
10 | 朱明星, 孔彬彬, 张华赢. 电缆化配电系统高频谐振频移方法[J]. 中国电力, 2021, 54 (8): 19- 26. |
ZHU Mingxing, KONG Binbin, ZHANG Huaying. High frequency resonance frequency shift method for cable distribution system[J]. Electric Power, 2021, 54 (8): 19- 26. | |
11 | 周辉, 吴耀武, 娄素华, 等. 基于模态分析和虚拟支路法的串联谐波谐振分析[J]. 中国电机工程学报, 2007, 27 (28): 84- 89. |
ZHOU Hui, WU Yaowu, LOU Suhua, et al. Series resonance analysis based on modal analysis and dummy branch method[J]. Proceedings of the CSEE, 2007, 27 (28): 84- 89. | |
12 |
BOTTURA F B, OLESKOVICZ M, LE T D, et al. Optimal positioning of power quality meters for monitoring potential conditions of harmonic resonances in a MV distribution system[J]. IEEE Transactions on Power Delivery, 2019, 34 (5): 1885- 1897.
DOI |
13 |
徐文远, 张大海. 基于模态分析的谐波谐振评估方法[J]. 中国电机工程学报, 2005, 25 (22): 89- 93.
DOI |
XU Wenyuan, ZHANG Dahai. A modal analysis method for harmonic resonance assessment[J]. Proceedings of the CSEE, 2005, 25 (22): 89- 93.
DOI |
|
14 |
AGRAWAL B L, FARMER R G. Use of frequency scanning techniques for subsynchronous resonance analysis[J]. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98 (2): 341- 349.
DOI |
15 |
HAMMAD A, KAMWA I, VIAROUGE P, et al. Modeling and simulation of the propagation of harmonics in electric power networks. I. concepts, models, and simulation techniques. discussion[J]. IEEE Transactions on Power Delivery, 1996, 11 (1): 452- 465.
DOI |
16 | XU W, HUANG Z Y, CUI Y, et al. Harmonic resonance mode analysis[C]//IEEE Power Engineering Society General Meeting. San Francisco, CA, USA. IEEE, 2005: 2236(3): 16. |
17 | 舒万韬, 洪芦诚, 刘宁波, 等. 多逆变器并网谐振特性分析[J]. 中国电机工程学报, 2018, 38 (17): 5009- 5019, 5298. |
SHU Wantao, HONG Lucheng, LIU Ningbo, et al. An analysis on resonance characteristics of multi-inverters grid-connected system[J]. Proceedings of the CSEE, 2018, 38 (17): 5009- 5019, 5298. | |
18 | HUANG Z Y, CUI Y, XU W. Application of modal sensitivity for power system harmonic resonance analysis[C]//2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA. IEEE, 2007: 1. |
19 |
YANG C X, LIU K P, ZHENG X, et al. Modal sensitivity analysis for parallel harmonic resonance in power system[J]. Advanced Materials Research, 2013, 732/733, 1432- 1437.
DOI |
20 | 仰彩霞, 刘开培, 李建奇, 等. 谐波谐振模态灵敏度分析[J]. 电工技术学报, 2011, 26 (S1): 207- 212. |
YANG Caixia, LIU Kaipei, LI Jianqi, et al. Modal sensitivity analysis for harmonic resonance[J]. Transactions of China Electrotechnical Society, 2011, 26 (S1): 207- 212. | |
21 |
HU H T, HE Z Y, ZHANG Y F, et al. Modal frequency sensitivity analysis and application using complex nodal matrix[J]. IEEE Transactions on Power Delivery, 2014, 29 (2): 969- 971.
DOI |
22 | 陶顺, 闫亚楠, 刘云博. 基于导纳模型的并网直驱风电场高频谐振分析[J]. 中国电机工程学报, 2022, 42 (21): 7832- 7843. |
TAO Shun, YAN Yanan, LIU Yunbo. High frequency resonance analysis of power system with a D-PMSG-based wind farm based on admittance model[J]. Proceedings of the CSEE, 2022, 42 (21): 7832- 7843. | |
23 | 胡伟, 孙建军, 马谦, 等. 多逆变器并网系统谐振特性分析[J]. 电力自动化设备, 2014, 34 (7): 93- 98. |
HU Wei, SUN Jianjun, MA Qian, et al. Resonant characteristics of multi-inverter grid-connection system[J]. Electric Power Automation Equipment, 2014, 34 (7): 93- 98. | |
24 | 王磊, 张凌博. 多逆变器并网等值建模及谐振抑制优化[J]. 电力系统保护与控制, 2021, 49 (6): 19- 29. |
WANG Lei, ZHANG Lingbo. Equivalent modeling of multi-inverters connected to the grid and optimization of resonance suppression[J]. Power System Protection and Control, 2021, 49 (6): 19- 29. | |
25 | 孙白艳. 计及谐波影响的配电网电容器优化配置研究[D]. 绵阳: 西南科技大学, 2015. |
SUN Baiyan. Account harmonic effects distribution network capacitor optimization research[D]. Mianyang: Southwest University of Science and Technology, 2015. |
[1] | Jing WU, Xuanyu LIU, Xiang LI, Xiaoyan QI, Chengjun LI, Zhong ZHANG. Research and Modelling of Bus Marginal Carbon Intensity for Power Systems Considering Network Losses [J]. Electric Power, 2024, 57(6): 215-224. |
[2] | Zhenlan DOU, Benfeng YUAN, Chunyan ZHANG, Guoping XIAO, Jianqiang WANG. Capacity Planning of Integrated Energy System of Wind Photovoltaic and Hydrogen Based on Reversible Solid Oxide Cell [J]. Electric Power, 2023, 56(10): 22-32. |
[3] | Yuhui WU, Yangfan ZHANG, Feng GAO, Yu WANG, Yaohan WANG, Weixin YANG, Hong ZHANG. Research on Online Monitoring of Crack Damage of Wind Turbine Blades Based on Working Modal Analysis [J]. Electric Power, 2023, 56(10): 106-114. |
[4] | LIU Ke, WANG Xuan, WANG Yang, WANG Xin, YANG Fangnan, LI Jianwu, LIU Dongping, GUO Cai, ZHANG Qisheng, CHEN Haimeng. Harmonic Model of Static Var Generator and Analysis of Its Resonance Influence [J]. Electric Power, 2022, 55(9): 174-182. |
[5] | XU Panteng, ZHU Bo, YU Wenxiang, SONG Shubo, YANG Xueguang, FAN Youping. High-Frequency Resonance Evaluation and Suppression Measures for Receiving-End of Kun-Liu-Long DC Project [J]. Electric Power, 2022, 55(3): 9-17. |
[6] | REN Dawei, XIAO Jinyun, HOU Jinming, DU Ershun, JIN Chen, ZHOU Yuanbing. Wide-Area Power System Generation-Transmission-Storage Coordinated Planning Method Based on Multiple Flexibility Constraints and Time-Series Simulation [J]. Electric Power, 2022, 55(1): 55-63. |
[7] | QIAO Teng, ZHANG Yiming, CAO Yijia, WANG Li, YUAN Qing. Parameter Identification of Low Voltage Ride-Through Control Model for Permanent Magnet Direct-Drive Wind Turbine Based on Probabilistic Reliability Assessment [J]. Electric Power, 2021, 54(12): 102-111. |
[8] | XIAO Feng, HAN Minxiao, TANG Xiaojun, ZHANG Xin. Voltage Stability of Weak Sending-end System with Large-Scale Grid-connected Photovoltaic Power Plants [J]. Electric Power, 2020, 53(11): 31-39. |
[9] | MIAO Miao, LIU Sai, SHI Tao, GUO Yasen, ZHANG Yiqing, LI Junxian. Optimal Dispatch Model of Grid-Connected Power Base Considering Photovoltaic Power and Concentrating Solar Power [J]. Electric Power, 2019, 52(4): 51-58. |
[10] | ZHU Wu, LIU Yajuan. Harmonic Resonance Mechanism Study of Large-Scale Photovoltaic Power Plants [J]. Electric Power, 2018, 51(3): 121-130. |
[11] | SUN Jianmei, CHEN Lu. Analysis on Grid-Connected Benefit of Distributed Photovoltaic Power Generation Based on LCOE Model [J]. Electric Power, 2018, 51(3): 88-93. |
[12] | ZHANG Yujiao, YANG Qi, JIANG Lan, XU Tianyong, DONG Xiaohu. Vibration Frequency Identification and Analysis for UHV Line Shield Ring [J]. Electric Power, 2018, 51(3): 35-41. |
[13] | LU Luyi, WANG Kun, LI Wangfan, SUN Qing, XUE Chenyong. Study on Fast Assessment of Shafting Fatigue Damage Based on Turbo-Generator Torque [J]. Electric Power, 2017, 50(5): 1-6. |
[14] | TAN Zhongfu, WANG Guan, LI Peng, YU Xiaobao, LI Qiuyan, WANG Lili. Research on Cooperative Game of Electricity Providers under the Market Environment [J]. Electric Power, 2017, 50(4): 45-51. |
[15] | GUO Yongming, YOU Xiaoke, LIU Guanqi. Small Signal Stability Optimal Designing of Direct-Driven Permanent Magnet Wind Power System Based on Sensitivity Analysis Method [J]. Electric Power, 2017, 50(2): 144-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||