Electric Power ›› 2024, Vol. 57 ›› Issue (6): 215-224.DOI: 10.11930/j.issn.1004-9649.202305075
• Technology and Economics • Previous Articles Next Articles
					
													Jing WU1(
), Xuanyu LIU2(
), Xiang LI1(
), Xiaoyan QI1, Chengjun LI1, Zhong ZHANG2
												  
						
						
						
					
				
Received:2023-05-16
															
							
															
							
																	Accepted:2023-08-14
															
							
																	Online:2024-06-23
															
							
							
																	Published:2024-06-28
															
							
						Supported by:Jing WU, Xuanyu LIU, Xiang LI, Xiaoyan QI, Chengjun LI, Zhong ZHANG. Research and Modelling of Bus Marginal Carbon Intensity for Power Systems Considering Network Losses[J]. Electric Power, 2024, 57(6): 215-224.
| 节点 | 出力/MW | 煤耗系数 | 碳排放 系数/%  | |||||||||
| 最小 | 最大 | a/ (t·(MW2·h)–1)  | b/ (t·(MW·h)–1)  | c/(t·h–1) | ||||||||
| 1 | 100 | 200 | 0.000338 | 0.2298 | 4.975 | 2.37 | ||||||
| 2 | 60 | 120 | 0.000421 | 0.2127 | 4.300 | 2.63 | ||||||
| 6 | 20 | 50 | 0.000677 | 0.2097 | 1.881 | 2.57 | ||||||
| 8 | 10 | 20 | 0.000927 | 0.2128 | 1.280 | 2.40 | ||||||
Table 1 Generator parameters
| 节点 | 出力/MW | 煤耗系数 | 碳排放 系数/%  | |||||||||
| 最小 | 最大 | a/ (t·(MW2·h)–1)  | b/ (t·(MW·h)–1)  | c/(t·h–1) | ||||||||
| 1 | 100 | 200 | 0.000338 | 0.2298 | 4.975 | 2.37 | ||||||
| 2 | 60 | 120 | 0.000421 | 0.2127 | 4.300 | 2.63 | ||||||
| 6 | 20 | 50 | 0.000677 | 0.2097 | 1.881 | 2.57 | ||||||
| 8 | 10 | 20 | 0.000927 | 0.2128 | 1.280 | 2.40 | ||||||
| 节点编号 | 火电机组 碳势  | 节点平均 碳势  | 节点正向边际 碳势  | 节点负向边际 碳势  | ||||
| 1 | 0.743 | 0.743 | 0.687 | 0.712 | ||||
| 2 | 0.793 | 0.770 | 0.701 | 0.726 | ||||
| 3 | 0.605 | 0.741 | 0.767 | |||||
| 4 | 0.761 | 0.726 | 0.751 | |||||
| 5 | 0.754 | 0.716 | 0.742 | |||||
| 6 | 0.723 | 0.726 | 0.710 | 0.735 | ||||
| 7 | 0.721 | 0.729 | 0.755 | |||||
| 8 | 0.709 | 0.709 | 0.729 | 0.755 | ||||
| 9 | 0.730 | 0.731 | 0.757 | |||||
| 10 | 0.726 | 0.732 | 0.758 | |||||
| 11 | 0.726 | 0.724 | 0.749 | |||||
| 12 | 0.726 | 0.721 | 0.747 | |||||
| 13 | 0.726 | 0.726 | 0.752 | |||||
| 14 | 0.727 | 0.744 | 0.771 | 
Table 2 Carbon intensity of generators and buses 单位:t/(MW·h)
| 节点编号 | 火电机组 碳势  | 节点平均 碳势  | 节点正向边际 碳势  | 节点负向边际 碳势  | ||||
| 1 | 0.743 | 0.743 | 0.687 | 0.712 | ||||
| 2 | 0.793 | 0.770 | 0.701 | 0.726 | ||||
| 3 | 0.605 | 0.741 | 0.767 | |||||
| 4 | 0.761 | 0.726 | 0.751 | |||||
| 5 | 0.754 | 0.716 | 0.742 | |||||
| 6 | 0.723 | 0.726 | 0.710 | 0.735 | ||||
| 7 | 0.721 | 0.729 | 0.755 | |||||
| 8 | 0.709 | 0.709 | 0.729 | 0.755 | ||||
| 9 | 0.730 | 0.731 | 0.757 | |||||
| 10 | 0.726 | 0.732 | 0.758 | |||||
| 11 | 0.726 | 0.724 | 0.749 | |||||
| 12 | 0.726 | 0.721 | 0.747 | |||||
| 13 | 0.726 | 0.726 | 0.752 | |||||
| 14 | 0.727 | 0.744 | 0.771 | 
| 1 | 代贤忠. 碳中和对能源领域的影响[EB/OL]. (2021-10-17)[2023-04-09]. https://baijiahao.baidu.com/s?id=1702895338045951179&wfr=spider&for=pc. | 
| 2 | 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54 (3): 1- 11. | 
| ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54 (3): 1- 11. | |
| 3 | 董福贵, 夏美娟, 李婉莹. 基于PSO-GWO的省级能耗强度预测与碳减排潜力估算[J]. 中国电力, 2023, 56 (9): 226- 234. | 
| DONG Fugui, XIA Meijuan, LI Wanying. Prediction of provincial energy consumption intensity and estimation of carbon emission reduction potential based on PSO-GWO[J]. Electric Power, 2023, 56 (9): 226- 234. | |
| 4 | 王小飞, 任洪波, 吴琼, 等. 考虑中长期碳减排约束的区域综合能源系统多阶段动态规划[J]. 中国电力, 2023, 56 (11): 185- 196. | 
| WANG Xiaofei, REN Hongbo, WU Qiong, et al. Multi-stage dynamic plan of regional integrated energy system considering medium and long-term carbon emission reduction constraints[J]. Electric Power, 2023, 56 (11): 185- 196. | |
| 5 | 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42 (19): 106- 111. | 
| CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42 (19): 106- 111. | |
| 6 |  
											KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow from generation to demand: a network-based model[J]. IEEE Transactions on Smart Grid, 2015, 6 (5): 2386- 2394. 
																							 DOI  | 
										
| 7 | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42 (8): 2830- 2842. | 
| LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42 (8): 2830- 2842. | |
| 8 | 汪超群, 陈懿, 文福拴, 等. 电力系统碳排放流理论改进与完善[J]. 电网技术, 2022, 46 (5): 1683- 1691. | 
| WANG C Q, CHEN Y, WEN F S, et al. Improvement and perfection of carbon emission flow theory in power systems[J]. Power System Technology, 2022, 46 (5): 1683- 1691. | |
| 9 | 李岩松, 刘启智, 张朕搏, 等. 基于电网功率分布的碳排放流计算方法[J]. 电网技术, 2017, 41 (3): 840- 844. | 
| LI Yansong, LIU Qizhi, ZHANG Zhenbo, et al. Algorithm of carbon emission flow based on power distribution[J]. Power System Technology, 2017, 41 (3): 840- 844. | |
| 10 | 周全, 冯冬涵, 徐长宝, 等. 负荷侧碳排放责任直接分摊方法的比较研究[J]. 电力系统自动化, 2015, 39 (17): 153- 159. | 
| ZHOU Quan, FENG Donghan, XU Changbao, et al. Methods for allocating carbon obligation in demand side: a comparative study[J]. Automation of Electric Power Systems, 2015, 39 (17): 153- 159. | |
| 11 | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46 (3): 821- 833. | 
| KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46 (3): 821- 833. | |
| 12 |  
											WANG X, GONG Y, JIANG C W. Regional carbon emission management based on probabilistic power flow with correlated stochastic variables[J]. IEEE Transactions on Power Systems, 2015, 30 (2): 1094- 1103. 
																							 DOI  | 
										
| 13 |  
											SHEN W, QIU J, MENG K, et al. Low-carbon electricity network transition considering retirement of aging coal generators[J]. IEEE Transactions on Power Systems, 2020, 35 (6): 4193- 4205. 
																							 DOI  | 
										
| 14 |  
											DENG L R, LI Z S, SUN H B, et al. Generalized locational marginal pricing in a heat-and-electricity-integrated market[J]. IEEE Transactions on Smart Grid, 2019, 10 (6): 6414- 6425. 
																							 DOI  | 
										
| 15 |  
											ZHONG W F, XIE K, LIU Y, et al. Nash mechanisms for market design based on distribution locational marginal prices[J]. IEEE Transactions on Power Systems, 2022, 37 (6): 4297- 4309. 
																							 DOI  | 
										
| 16 |  
											BAI L Q, WANG J H, WANG C S, et al. Distribution locational marginal pricing (DLMP) for congestion management and voltage support[J]. IEEE Transactions on Power Systems, 2018, 33 (4): 4061- 4073. 
																							 DOI  | 
										
| 17 |  
											WANG Y Q, QIU J, TAO Y C. Optimal power scheduling using data-driven carbon emission flow modelling for carbon intensity control[J]. IEEE Transactions on Power Systems, 2022, 37 (4): 2894- 2905. 
																							 DOI  | 
										
| 18 |  
											LV S, CHEN S, WEI Z N, et al. Power–transportation coordination: toward a hybrid economic-emission dispatch model[J]. IEEE Transactions on Power Systems, 2022, 37 (5): 3969- 3981. 
																							 DOI  | 
										
| 19 | 张刚, 张峰, 张利, 等. 考虑碳排放交易的日前调度双阶段鲁棒优化模型[J]. 中国电机工程学报, 2018, 38 (18): 5490- 5499. | 
| ZHANG Gang, ZHANG Feng, ZHANG Li, et al. Two-stage robust optimization model of day-ahead scheduling considering carbon emissions trading[J]. Proceedings of the CSEE, 2018, 38 (18): 5490- 5499. | |
| 20 | 周孟然, 王旭, 邵帅, 等. 考虑需求响应和碳排放额度的微电网分层优化调度[J]. 中国电力, 2022, 55 (10): 45- 53. | 
| ZHOU Mengran, WANG Xu, SHAO Shuai, et al. Hierarchical optimal scheduling of microgrid considering demand response and carbon emission quota[J]. Electric Power, 2022, 55 (10): 45- 53. | |
| 21 | 陈厚合, 茅文玲, 张儒峰, 等. 基于碳排放流理论的电力系统源-荷协调低碳优化调度[J]. 电力系统保护与控制, 2021, 49 (10): 1- 11. | 
| CHEN Houhe, MAO Wenling, ZHANG Rufeng, et al. Low-carbon optimal scheduling of a power system source-load considering coordination based on carbon emission flow theory[J]. Power System Protection and Control, 2021, 49 (10): 1- 11. | |
| 22 | 卢治霖, 刘明波, 尚楠, 等. 考虑碳排放权交易市场影响的日前电力市场两阶段出清模型[J]. 电力系统自动化, 2022, 46 (10): 159- 170. | 
| LU Zhilin, LIU Mingbo, SHANG Nan, et al. Two-stage clearing model for day-ahead electricity market considering impact of carbon emissions trading market[J]. Automation of Electric Power Systems, 2022, 46 (10): 159- 170. | |
| 23 | 缑新科, 崔乐乐, 巨圆圆, 等. 火电厂机组煤耗特性曲线拟合算法研究[J]. 电力系统保护与控制, 2014, 42 (10): 84- 89. | 
| GOU Xinke, CUI Lele, JU Yuanyuan, et al. Study on curve fitting algorithm for thermal power plant units coal consumption[J]. Power System Protection and Control, 2014, 42 (10): 84- 89. | |
| 24 | 冯欣, 杨军. 考虑网络损耗的碳排放流理论改进与完善[J]. 电力自动化设备, 2016, 36 (5): 81- 86. | 
| FENG Xin, YANG Jun. Improvement and enhancement of carbon emission flow theory considering power loss[J]. Electric Power Automation Equipment, 2016, 36 (5): 81- 86. | |
| 25 | RUIZ P A, RUDKEVICH A. Analysis of marginal carbon intensities in constrained power networks[C]//2010 43rd Hawaii International Conference on System Sciences. Honolulu, HI, USA. IEEE, 2010: 1–9. | 
| 26 | 周全. 节能减排环境下电力系统碳排放责任分摊机制研究[D]. 上海: 上海交通大学, 2016. | 
| ZHOU Quan. The study of carbon emission obligation allocation in power systems under the environment of energy-saving and emission-reduction[D]. Shanghai: Shanghai Jiaotong University, 2016. | |
| 27 | 陈厚合, 张鹏, 姜涛, 等. 基于灵敏度分析的综合能源系统运行安全性的研究[J]. 电力自动化设备, 2019, 39 (8): 95- 103. | 
| CHEN Houhe, ZHANG Peng, JIANG Tao, et al. Security analysis based on sensitivity analysis for integrated electric and gas energy system[J]. Electric Power Automation Equipment, 2019, 39 (8): 95- 103. | |
| 28 | 高慧敏, 章坚民, 江力. 基于二阶网损无功灵敏度矩阵的配电网无功补偿选点[J]. 电网技术, 2014, 38 (7): 1979- 1983. | 
| GAO Huimin, ZHANG Jianmin, JIANG Li. Optimal location of reactive power compensation for distribution network based on second order loss-reactive power sensitivity matrix[J]. Power System Technology, 2014, 38 (7): 1979- 1983. | |
| 29 | 蔡宇, 李保卫, 胡泽春, 等. 燃煤机组碳排放指标计算及影响因素分析[J]. 电网技术, 2013, 37 (5): 1185- 1189. | 
| CAI Yu, LI Baowei, HU Zechun, et al. Calculation of carbon emission index of coal-fired generating unit and analysis on influencing factors[J]. Power System Technology, 2013, 37 (5): 1185- 1189. | |
| 30 |  
											沈照人. 回归分析法在碳排放核查中测算发电企业燃煤发热量的应用[J]. 煤质技术, 2021, 36 (5): 69- 74. 
																							 DOI  | 
										
|  
											SHEN Zhaoren. The application of regression analysis method to measure the calorific value of coal in power generation enterprises in carbon emission verification[J]. Coal Quality Technology, 2021, 36 (5): 69- 74. 
																							 DOI  | 
										|
| 31 |  
											康重庆, 程耀华, 孙彦龙, 等. 电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41 (18): 10- 16. 
																							 DOI  | 
										
|  
											KANG Chongqing, CHENG Yaohua, SUN Yanlong, et al. Recursive calculation method of carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2017, 41 (18): 10- 16. 
																							 DOI  | 
										|
| 32 | 王景亮, 张焰, 王承民, 等. 基于灵敏度分析与最优潮流的电网无功/电压考核方法[J]. 电网技术, 2005, 29 (10): 65- 69. | 
| WANG Jingliang, ZHANG Yan, WANG Chengmin, et al. Power system reactive power/voltage assessment based on sensitivity analysis and optimal power flow[J]. Power System Technology, 2005, 29 (10): 65- 69. | |
| 33 | 王洪涛, 邹斌, 张亮. 基于节点传输贡献量的省间联络线潮流近似计算[J]. 电力自动化设备, 2020, 40 (6): 135- 141. | 
| WANG Hongtao, ZOU Bin, ZHANG Liang. Approximate calculation of inter-provincial tie-line power flow based on node transmission contribution[J]. Electric Power Automation Equipment, 2020, 40 (6): 135- 141. | |
| 34 | VENKATESWARA REDDY M, MUNI B P, SARMA A V R S. Enhancement of voltage profile for IEEE 14 bus system with inter line power flow controller[C]//2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE). Bengaluru, India. IEEE, 2016: 1–5. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
