Electric Power ›› 2023, Vol. 56 ›› Issue (10): 202-210.DOI: 10.11930/j.issn.1004-9649.202306114
• New Energy • Previous Articles Next Articles
Zhoubin LIU1(), Tao ZHU1, Wei JIANG1, Xiaobo ZHANG1, Jionggeng WANG1, Qianqian GUAN1, Qiushi ZHANG2, Qingliang ZHAO2(
)
Received:
2023-06-28
Accepted:
2023-09-26
Online:
2023-10-23
Published:
2023-10-28
Supported by:
Zhoubin LIU, Tao ZHU, Wei JIANG, Xiaobo ZHANG, Jionggeng WANG, Qianqian GUAN, Qiushi ZHANG, Qingliang ZHAO. Simulation Analysis and Structure Optimization of Cooling System for Energy Storage Lithium-Ion Battery Pack[J]. Electric Power, 2023, 56(10): 202-210.
项目 | 数值 | |
电芯材料 | 磷酸铁锂 | |
电芯容量/Ah | 280 | |
额定电压/V | 3.2 | |
导热系数 x, y, z/(W·(m·K)–1) | 21.6, 21.6, 2.11 | |
比热容/(J·(kg·K)–1) | 3 660 | |
密度/(kg·m–3) | 2 120 | |
电芯尺寸/mm | 204×174×72 | |
电芯内阻/mΩ | 0.43 |
Table 1 Parameters of cell
项目 | 数值 | |
电芯材料 | 磷酸铁锂 | |
电芯容量/Ah | 280 | |
额定电压/V | 3.2 | |
导热系数 x, y, z/(W·(m·K)–1) | 21.6, 21.6, 2.11 | |
比热容/(J·(kg·K)–1) | 3 660 | |
密度/(kg·m–3) | 2 120 | |
电芯尺寸/mm | 204×174×72 | |
电芯内阻/mΩ | 0.43 |
方案 | 1 | 2 | 3 | 4 | 5 | |||||
数量/万 | 738 | 886 | 984 | 1143 | 1737 |
Table 2 Five cases with mesh numbers
方案 | 1 | 2 | 3 | 4 | 5 | |||||
数量/万 | 738 | 886 | 984 | 1143 | 1737 |
项目 | 水-乙二醇溶液 | 绝缘液体 | ||
密度(20 ℃)/(kg·m–3) | 1075 | 820 | ||
导热系数/(W·(m·K)–1) | 0.375 | 0.142 | ||
比热容/(J·(kg·K)–1) | 3251 | 2200 | ||
运动粘度(40 ℃)/cSt | 4.8 | 10.5 |
Table 3 Parameters of coolant
项目 | 水-乙二醇溶液 | 绝缘液体 | ||
密度(20 ℃)/(kg·m–3) | 1075 | 820 | ||
导热系数/(W·(m·K)–1) | 0.375 | 0.142 | ||
比热容/(J·(kg·K)–1) | 3251 | 2200 | ||
运动粘度(40 ℃)/cSt | 4.8 | 10.5 |
冷却方式 | 间接式 | 浸没式 | 优化模型 | |||
压降/kPa | 66.10 | 3.50 | 1.38 |
Table 4 Comparison of pressure drop
冷却方式 | 间接式 | 浸没式 | 优化模型 | |||
压降/kPa | 66.10 | 3.50 | 1.38 |
1 | 杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59 (6): 239- 254. |
YANG Xulai, YUAN Shuaishuai, YANG Wenjing, et al. Research progress on energy density of Li-ion batteries for EVs[J]. Journal of Mechanical Engineering, 2023, 59 (6): 239- 254. | |
2 | 郎伟强, 楼鑫, 叶加炜, 等. 新能源系统中的储能技术分析[J]. 电子技术, 2022, 51 (10): 172- 173. |
LANG Weiqiang, LOU Xin, YE Jiawei, et al. Analysis of energy storage technology in new energy system[J]. Electronic Technology, 2022, 51 (10): 172- 173. | |
3 |
俞恩科, 陈梁金. 大规模电力储能技术的特性与比较[J]. 浙江电力, 2011, 30 (12): 4- 8.
DOI |
YU Enke, CHEN Liangjin. Characteristics and comparison of large-scale electric energy storage technologies[J]. Zhejiang Electric Power, 2011, 30 (12): 4- 8.
DOI |
|
4 |
刘阳, 滕卫军, 谷青发, 等. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12 (1): 312- 318.
DOI |
LIU Yang, TENG Weijun, GU Qingfa, et al. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis[J]. Energy Storage Science and Technology, 2023, 12 (1): 312- 318.
DOI |
|
5 |
KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149, 192- 212.
DOI |
6 |
VISHNUMURTHY K A, GIRISH K H. A comprehensive review of battery technology for E-mobility[J]. Journal of the Indian Chemical Society, 2021, 98 (10): 100173.
DOI |
7 | TERADA N, YANAGI T, ARAI S, et al. Development of lithium batteries for energy storage and EV applications[J]. Journal of Power Sources, 2001, 100 (1/2): 80- 92. |
8 |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140 (6): 1526- 1533.
DOI |
9 |
CHEN Z Y, XIONG R, SUN F C. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55 (24): 93.
DOI |
10 |
BAI F F, CHEN M B, SONG W J, et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126, 17- 27.
DOI |
11 |
CHEN K, WU W X, YUAN F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167, 781- 790.
DOI |
12 |
PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110 (2): 377- 382.
DOI |
13 |
FAN Y Q, BAO Y, LING C, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155, 96- 109.
DOI |
14 |
CHEN D F, JIANG J C, KIM G H, et al. Comparison of different cooling methods for lithium ion battery cells[J]. Applied Thermal Engineering, 2016, 94, 846- 854.
DOI |
15 |
ZHAO Q A, WU H W, WANG Z H, et al. Numerical research on lithium-ion battery thermal management utilizing a novel cobweb-like channel cooling plate exchanger[J]. Frontiers in Energy Research, 2022, 10, 992779.
DOI |
16 | 孔为, 金劲涛, 陆西坡, 等. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11 (7): 2258- 2265. |
KONG Wei, JIN Jintao, LU Xipo, et al. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel[J]. Energy Storage Science and Technology, 2022, 11 (7): 2258- 2265. | |
17 |
WU M S, HUNG Y H, WANG Y Y, et al. Heat dissipation behavior of the nickel/metal hydride battery[J]. Journal of the Electrochemical Society, 2000, 147 (3): 930.
DOI |
18 |
WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182, 262- 281.
DOI |
19 |
ROE C, FENG X N, WHITE G, et al. Immersion cooling for lithium-ion batteries-a review[J]. Journal of Power Sources, 2022, 525, 231094.
DOI |
20 |
NELSON P, DEES D, AMINE K, et al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110 (2): 349- 356.
DOI |
21 |
DENG Y W, FENG C L, JIAQIANG E, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review[J]. Applied Thermal Engineering, 2018, 142, 10- 29.
DOI |
22 |
田钧, 高帅. 基于浸没式技术的纯电动汽车电池包热管理方案解析[J]. 汽车电器, 2023, (5): 6- 8.
DOI |
TIAN Jun, GAO Shuai. Solution analysis of battery pack thermal management for pure electric vehicle based on immersion technology[J]. Auto Electric Parts, 2023, (5): 6- 8.
DOI |
|
23 |
CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140 (1): 111- 124.
DOI |
24 |
JARRETT A, KIM I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196 (23): 10359- 10368.
DOI |
25 | 路帅. 锂离子动力电池模组热场仿真及散热控制[D]. 吉林: 东北电力大学, 2021. |
LU Shuai. Thermal field simulation and heat dissipation control of lithium ion power battery module[D]. Jilin: Northeast Dianli University, 2021. | |
26 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132 (1): 5- 12.
DOI |
27 |
吕超, 张爽, 朱世怀, 等. 储能锂离子电池包强制风冷系统热仿真分析与优化[J]. 电力系统保护与控制, 2021, 49 (12): 48- 55.
DOI |
LÜ Chao, ZHANG Shuang, ZHU Shihuai, et al. Thermal simulation analysis and optimization of forced air cooling system for energy storage lithium-ion battery pack[J]. Power System Protection and Control, 2021, 49 (12): 48- 55.
DOI |
|
28 |
王明强, 郭月明, 许淘淘, 等. 锂离子动力电池组发热功率试验研究[J]. 汽车零部件, 2020, (5): 69- 72.
DOI |
WANG Mingqiang, GUO Yueming, XU Taotao, et al. Experiment research on the heating power of lithium-ion battery module[J]. Automobile Parts, 2020, (5): 69- 72.
DOI |
|
29 |
HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89, 387- 395.
DOI |
30 |
STERN F, WILSON R V, COLEMAN H W, et al. Comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures[J]. Journal of Fluids Engineering, 2001, 123 (4): 793- 802.
DOI |
31 | 安富强, 赵洪量, 程志, 等. 纯电动车用锂离子电池发展现状与研究进展[J]. 工程科学学报, 2019, 41 (1): 22- 42. |
AN Fuqiang, ZHAO Hongliang, CHENG Zhi, et al. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41 (1): 22- 42. | |
32 | 卢子敬, 李子寿, 郭相国, 等. 基于多目标人工蜂鸟算法的电-氢混合储能系统最优配置[J]. 中国电力, 2023, 56 (7): 33- 42. |
LU Zijing, LI Zishou, GUO Xiangguo, et al. Optimal configuration of electricity-hydrogen hybrid energy storage system based on multi-objective artificial hummingbird algorithm[J]. Electric Power, 2023, 56 (7): 33- 42. | |
33 | 张媛, 夏向阳, 岳家辉, 等. 基于电池簇放电电量的电池堆不一致性在线监测方法[J]. 中国电力, 2023, 56 (7): 207- 215, 227. |
ZHANG Yuan, XIA Xiangyang, YUE Jiahui, et al. Online monitoring method of battery stack inconsistency based on discharge quantity of battery clusters[J]. Electric Power, 2023, 56 (7): 207- 215, 227. | |
34 | 余斌, 宋兴荣, 周挺, 等. 基于梅尔倒谱系数特征集的储能变流器开路故障诊断方法[J]. 中国电力, 2022, 55 (12): 34- 42. |
YU Bin, SONG Xingrong, ZHOU Ting, et al. Open circuit fault diagnosis method of energy storage converter based on Mel cepstrum coefficient feature set[J]. Electric Power, 2022, 55 (12): 34- 42. | |
35 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55 (8): 73- 86, 95. |
LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55 (8): 73- 86, 95. |
[1] | Shun ZHANG, Zhenguo WANG, Wendong JIANG, Feng XU, Zhongdong DUAN. Numerical Study of Ultra-High Voltage Transmission Tower Wind Loads Characteristics Against Tornado [J]. Electric Power, 2023, 56(10): 153-163. |
[2] | PAN Xiaowei, PENG Shuo, LI Shuo, ZHOU Xian, WANG Changjun, LIU Jun, WANG Ruiyuan. Research on the Uniformity of Flow Field in the Low-Temperature Waste Heat Recovery Tower of Waste Heat Boiler Flue Gas [J]. Electric Power, 2022, 55(3): 159-166. |
[3] | WEI Jianguo, LIU Weilin, DENG Hui, HUANG Hui, ZHANG Jia. Numerical Simulation and Optimization of Metal Grid Architecture for Laser Photovoltaic Converters [J]. Electric Power, 2021, 54(10): 161-168. |
[4] | LI Man, HAN Jingqin, LI Lujun, ZHAO Shun’an. Analysis on Design Scheme of Main-Auxiliary Combined Indirect Dry Air Cooling Tower for 660 MW Power Plant Units [J]. Electric Power, 2020, 53(5): 155-163. |
[5] | LEI Siyuan, LI Haihao, LI Letian, NI Guidong, KONG Fanhai, WU Guoxun, BIAN Zijun. Design for Modification of Flue Gas Temperature Adjustment Bypass for SCR Denitrification System under Low Load Operation Conditions [J]. Electric Power, 2019, 52(9): 179-184. |
[6] | CHEN Haijie, MA Wu, LIU Gongyi, GAO Pan. Study on SNCR Denitration of W-flame Boiler and Its Effect on the Flow Field of SCR Inlet Section [J]. Electric Power, 2019, 52(7): 146-153. |
[7] | YAN Junfu, ZHAO Xuebin. Testing and Numerical Simulation on the Abrasion of SCR Catalysts [J]. Electric Power, 2019, 52(5): 170-175. |
[8] | XIAO Yujun, ZOU Yihui, LI Caiting, ZHOU Xuebin. Applicability Analysis on the Structure Model and Numerical Model for the SCR System [J]. Electric Power, 2019, 52(3): 146-152,160. |
[9] | LIU Hanxiao, CHEN Zhaomei, GUO Gaofei, WANG Jianbo, CUI Ying, MENG Yincan, LIU Meiling. Experimental Studies and Numerical Simulation on the Injection and Spray of Activated Carbon Powder for Mercury Removal from Flue Gas [J]. Electric Power, 2019, 52(10): 138-143,170. |
[10] | SHE Xiaoli, PAN Weiguo, WANG Chengyao, NI Yingchun, QIN Ling. Numerical Simulation of Evaporative Evaporation of Desulfurization Wastewater by the By-pass Tower [J]. Electric Power, 2019, 52(1): 129-136. |
[11] | ZHOU Lingmei, ZHANG Guanjun, ZHU Xianran, LI Haoyu, JIAO Kaiming. Technical and Economic Investigation of Blended Combustion with Inferior Coal on 600 MW Unit Boiler [J]. Electric Power, 2018, 51(9): 1-7. |
[12] | MA Junhua, LU Yiming, YUAN Wenguang, WANG Lei, HUANG Wenrui, YAN Xing. Study on the Evaluation Framework of the Energy Internet [J]. Electric Power, 2018, 51(8): 38-42. |
[13] | LEI Jianqi. Flow Field Optimization on the Catalyst Layer Breakage Failure of the SCR-DeNOx System for a Coal-fired Power Plant [J]. Electric Power, 2018, 51(7): 152-156,169. |
[14] | YANG Laishun, XU Minghai, CHEN Qiushi. Numerical Simulation on Separation Performance of Tube Mist Eliminator with Holes [J]. Electric Power, 2018, 51(7): 178-184. |
[15] | YE Xiafeng, DING Honglei, PAN Weiguo, PAN Yanxing. Numerical Study on the Heat Transfer, Fouling and Erosion Characteristics of the Elliptical Tube Bundle with Different Extended Heating Surfaces [J]. Electric Power, 2018, 51(6): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||