Electric Power ›› 2023, Vol. 56 ›› Issue (12): 164-173.DOI: 10.11930/j.issn.1004-9649.202302034
• Planning and Operation Technologies for Multi-Energy Systems in Low-Carbon Parks • Previous Articles Next Articles
Mingfeng XUE1(), Xiaobo MAO1, Hao XIAO2(
), Yibin ZHOU2, Xiaowei PU2, Wei PEI2
Received:
2023-02-09
Accepted:
2023-05-10
Online:
2023-12-23
Published:
2023-12-28
Supported by:
CLC Number:
Mingfeng XUE, Xiaobo MAO, Hao XIAO, Yibin ZHOU, Xiaowei PU, Wei PEI. Cooperative Operation Optimization for Integrated Energy Microgrid Groups Based on Federated Learning[J]. Electric Power, 2023, 56(12): 164-173.
微网 | 设备参数/kW | |||||||||
风电 | 光伏 | 燃气轮机 | 储能 | 燃气锅炉 | ||||||
1 | 280 | 240 | 200 | 200 | ||||||
2 | 400 | 200 | 300 | |||||||
3 | 360 | 300 | 400 |
Table 1 Basic parameters of each integrated energy microgrid
微网 | 设备参数/kW | |||||||||
风电 | 光伏 | 燃气轮机 | 储能 | 燃气锅炉 | ||||||
1 | 280 | 240 | 200 | 200 | ||||||
2 | 400 | 200 | 300 | |||||||
3 | 360 | 300 | 400 |
案例 | 运行成本/元 | |||||||
微网1 | 微网2 | 微网3 | 总计 | |||||
1 | 290.9 | 942.0 | 2 036.9 | 3 269.9 | ||||
2 | 43.3 | 571.4 | 1 784.6 | 2 399.3 | ||||
3 | 63.3 | 626.9 | 1 796.4 | 2 486.6 |
Table 2 Comparison of operating costs in different cases
案例 | 运行成本/元 | |||||||
微网1 | 微网2 | 微网3 | 总计 | |||||
1 | 290.9 | 942.0 | 2 036.9 | 3 269.9 | ||||
2 | 43.3 | 571.4 | 1 784.6 | 2 399.3 | ||||
3 | 63.3 | 626.9 | 1 796.4 | 2 486.6 |
案例 | 平均总运行费用/元 | 平均求解时间/s | ||
2 | 2 239.4 | 1.877 | ||
3 | 2 326.0 | 0.145 |
Table 3 Comparison of calculation time of different cases
案例 | 平均总运行费用/元 | 平均求解时间/s | ||
2 | 2 239.4 | 1.877 | ||
3 | 2 326.0 | 0.145 |
1 | 屈小云, 吴鸣, 李奇, 等. 多能互补综合能源系统综合评价研究进展综述[J]. 中国电力, 2021, 54 (11): 153- 163. |
QU Xiaoyun, WU Ming, LI Qi, et al. Review on comprehensive evaluation of multi-energy complementary integrated energy systems[J]. Electric Power, 2021, 54 (11): 153- 163. | |
2 | 孔力, 裴玮, 饶建业, 等. 建设新型电力系统促进实现碳中和[J]. 中国科学院院刊, 2022, 37 (4): 522- 528. |
KONG Li, PEI Wei, RAO Jianye, et al. Build new power system to promote carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37 (4): 522- 528. | |
3 |
CHEN L, XU Q S, YANG Y B, et al. Community integrated energy system trading: a comprehensive review[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10 (6): 1445- 1458.
DOI |
4 | 杨挺, 赵黎媛, 王成山. 人工智能在电力系统及综合能源系统中的应用综述[J]. 电力系统自动化, 2019, 43 (1): 2- 14. |
YANG Ting, ZHAO Liyuan, WANG Chengshan. Review on application of artificial intelligence in power system and integrated energy system[J]. Automation of Electric Power Systems, 2019, 43 (1): 2- 14. | |
5 |
肖浩, 裴玮, 孔力. 基于模型预测控制的微电网多时间尺度协调优化调度[J]. 电力系统自动化, 2016, 40 (18): 7- 14, 55.
DOI |
XIAO Hao, PEI Wei, KONG Li. Multi-time scale coordinated optimal dispatch of microgrid based on model predictive control[J]. Automation of Electric Power Systems, 2016, 40 (18): 7- 14, 55.
DOI |
|
6 |
陈健, 张维桐, 张逸成, 等. 考虑不同空调负荷特性的微网双层优化调度[J]. 电网技术, 2018, 42 (5): 1424- 1431.
DOI |
CHEN Jian, ZHANG Weitong, ZHANG Yicheng, et al. Bi-level optimal dispatch of microgrid considering different air-conditioning load characteristics[J]. Power System Technology, 2018, 42 (5): 1424- 1431.
DOI |
|
7 | 郭宴秀, 苏建军, 刘洋, 等. 考虑电热交互和共享储能的多综合能源系统运行优化[J]. 中国电力, 2023, 56 (4): 138- 145. |
GUO Yanxiu, SU Jianjun, LIU Yang, et al. Optimal operation of multiple integrated energy systems considering power and heat interaction and shared energy storage system[J]. Electric Power, 2023, 56 (4): 138- 145. | |
8 |
张程, 匡宇, 刘佳静, 等. 考虑需求侧管理的风光燃储微网两阶段优化调度[J]. 电力系统保护与控制, 2022, 50 (24): 13- 22.
DOI |
ZHANG Cheng, KUANG Yu, LIU Jiajing, et al. Two-stage optimal scheduling of a wind, photovoltaic, gas turbine, fuel cell and storage energy microgrid considering demand-side management[J]. Power System Protection and Control, 2022, 50 (24): 13- 22.
DOI |
|
9 |
刘显茁, 王皓怀, 田伟达, 等. 基于多源协同的区域分层能源综合调度优化[J]. 智慧电力, 2022, 50 (9): 53- 58.
DOI |
LIU Xianzhuo, WANG Haohuai, TIAN Weida, et al. Comprehensive scheduling optimization of regional hierarchical energy based on multi-source coordination[J]. Smart Power, 2022, 50 (9): 53- 58.
DOI |
|
10 | 周丽红, 于浩, 李鹏. 考虑居民热负荷主动需求响应的园区综合能源系统分布式优化运行方法[J]. 电网技术, 2023, 47 (5): 1989- 1997. |
ZHOU Lihong, YU Hao, LI Peng. Distributed optimal operation method of park-level integrated energy system considering active demand response of residential heat loads[J]. Power System Technology, 2023, 47 (5): 1989- 1997. | |
11 |
LEI Y K, TANG Q, LI T, et al. A multi-individual distributed modeling and optimization method for integrated energy systems with complex composition[J]. IEEE Access, 2020, 8, 136198- 136205.
DOI |
12 | 周鑫, 韩肖清, 李廷钧, 等. 计及需求响应和电能交互的多主体综合能源系统主从博弈优化调度策略[J]. 电网技术, 2022, 46 (9): 3333- 3344. |
ZHOU Xin, HAN Xiaoqing, LI Tingjun, et al. Master-slave game optimal scheduling strategy for multi-agent integrated energy system based on demand response and power interaction[J]. Power System Technology, 2022, 46 (9): 3333- 3344. | |
13 | 姚文亮, 王成福, 赵雨菲, 等. 不确定性环境下基于合作博弈的综合能源系统分布式优化[J]. 电力系统自动化, 2022, 46 (20): 43- 53. |
YAO Wenliang, WANG Chengfu, ZHAO Yufei, et al. Distributed optimization of integrated energy system based on cooperative game in uncertain environment[J]. Automation of Electric Power Systems, 2022, 46 (20): 43- 53. | |
14 |
GAO S H, XIANG C, YU M, et al. Online optimal power scheduling of a microgrid via imitation learning[J]. IEEE Transactions on Smart Grid, 2022, 13 (2): 861- 876.
DOI |
15 |
朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41 (23): 7905- 7923.
DOI |
ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Review of data-driven load forecasting for integrated energy system[J]. Proceedings of the CSEE, 2021, 41 (23): 7905- 7923.
DOI |
|
16 |
乔骥, 王新迎, 张擎, 等. 基于柔性行动器–评判器深度强化学习的电–气综合能源系统优化调度[J]. 中国电机工程学报, 2021, 41 (3): 819- 833.
DOI |
QIAO Ji, WANG Xinying, ZHANG Qing, et al. Optimal dispatch of integrated electricity-gas system with soft actor-critic deep reinforcement learning[J]. Proceedings of the CSEE, 2021, 41 (3): 819- 833.
DOI |
|
17 |
杨挺, 赵黎媛, 刘亚闯, 等. 基于深度强化学习的综合能源系统动态经济调度[J]. 电力系统自动化, 2021, 45 (5): 39- 47.
DOI |
YANG Ting, ZHAO Liyuan, LIU Yachuang, et al. Dynamic economic dispatch for integrated energy system based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45 (5): 39- 47.
DOI |
|
18 |
DU Y, LI F X. Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11 (2): 1066- 1076.
DOI |
19 |
ZHANG Q Z, DEHGHANPOUR K, WANG Z Y, et al. Multi-agent safe policy learning for power management of networked microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12 (2): 1048- 1062.
DOI |
20 |
LEE S, CHOI D H. Federated reinforcement learning for energy management of multiple smart homes with distributed energy resources[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (1): 488- 497.
DOI |
21 | 陈明昊, 孙毅, 胡亚杰, 等. 基于纵向联邦强化学习的居民社区综合能源系统协同训练与优化管理方法[J]. 中国电机工程学报, 2022, 42 (15): 5535- 5550. |
CHEN Minghao, SUN Yi, HU Yajie, et al. The collaborative training and management-optimized method for residential Integrated energy system based on vertical federated reinforcement learning[J]. Proceedings of the CSEE, 2022, 42 (15): 5535- 5550. | |
22 |
XIAO H, PEI W, WU L, et al. A novel deep learning based probabilistic power flow method for Multi-Microgrids distribution system with incomplete network information[J]. Applied Energy, 2023, 335, 120716.
DOI |
23 |
李彦君, 裴玮, 肖浩, 等. 基于深度学习的微网需求响应特性封装与配电网优化运行[J]. 电力系统自动化, 2021, 45 (10): 157- 165.
DOI |
LI Yanjun, PEI Wei, XIAO Hao, et al. Deep learning based characteristic packaging of demand response for microgrids and optimal operation of distribution network[J]. Automation of Electric Power Systems, 2021, 45 (10): 157- 165.
DOI |
|
24 | 杨楠, 周峥, 陈道君, 等. 基于非参数核密度估计的风功率波动性概率密度建模方法[J]. 太阳能学报, 2019, 48 (7): 2028- 2035. |
YANG Nan, ZHOU Zheng, CHEN Daojun, et al. Research of modeling method based on non-parametric kernel density estimation of probability of wind power fluctuations[J]. Acta Energiae Solaris Sinica, 2019, 48 (7): 2028- 2035. | |
25 |
XIAO H, PEI W, DONG Z M, et al. Bi-level planning for integrated energy systems incorporating demand response and energy storage under uncertain environments using novel metamodel[J]. CSEE Journal of Power and Energy Systems, 2018, 4 (2): 155- 167.
DOI |
26 | YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 10(2): 1–19. |
27 | ZHANG Y F, ZHU H. Additively homomorphical encryption based deep neural network for asymmetrically collaborative machine learning[EB/OL]. 2020: arXiv: 2007.06849.https://arxiv.org/abs/2007.06849.pdf. |
28 | ZHANG Q, WANG C, WU H Y, et al. GELU-net: a globally encrypted, locally unencrypted deep neural network for privacy-preserved learning[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm, Sweden. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 3933–3939. |
[1] | Zhiyuan GAO, Weijin ZHUANG, Feng LI, Fang YU, Hong ZHANG, Yan WANG, Min XIA. High Reusability Verification Platform for Artificial Intelligence Applications in Power Grid Dispatching and Control Field [J]. Electric Power, 2025, 58(3): 142-150. |
[2] | Jianhua ZHOU, Changyu LIANG, Linjun SHI, Yang LI, Wenfei YI. Optimal Scheduling of Integrated Energy System Considering The Ladder-Type Carbon Trading Mechanism [J]. Electric Power, 2025, 58(2): 77-87. |
[3] | Yumin ZHANG, Yanbin Yin, Xingquan JI, Pingfeng YE, Donglei SUN, Aiquan SONG. Optimal Dispatch of Integrated Electric-Heat Energy System Considering Supply Flexibility of Heat Networks Under Different Operation States [J]. Electric Power, 2025, 58(2): 88-102. |
[4] | Zhibin YAN, Li LI, Peng YANG, Huihui SONG, bin CHE, Panlong JIN. Optimal Scheduling Strategy for Microgrid Considering the Support Capabilities of Grid Forming Energy Storage [J]. Electric Power, 2025, 58(2): 103-110. |
[5] | Jingcheng HU, Yunhao FAN, Tong ZHU, Zhenping CHEN. Distributed Low-Carbon Economic Dispatch for Integrated Energy System Based on Homomorphic Encryption [J]. Electric Power, 2025, 58(2): 164-175. |
[6] | Pingping LUO, Ao SHENG, Jikeng LIN, Zhongyue WANG, Qiben LI, Ping ZHOU. CGAN-Based Load Scenario Generation under Typhoon Weather [J]. Electric Power, 2025, 58(2): 176-185. |
[7] | Kun HUANG, Ming FU, Jiaxiang ZHAI, Haochen HUA. Distributed Coordination Optimization for Economic Operation of the Multi-Microgrid System Based on Improved Linearization ADMM [J]. Electric Power, 2025, 58(2): 193-202. |
[8] | Hai LU, Hao ZHANG, Xiaoyun CHEN, Suyang ZHOU. Collaborative Planning Method for Multi-energy Networks Based on Double-layer Game Theory [J]. Electric Power, 2025, 58(1): 93-99. |
[9] | Ling LU, Tao YUAN, Bo YANG, Xin LI, Yang LU, Qiuping PU, Xin ZHANG. Two-Layer Optimization of Regional Integrated Energy System Considering Exergy Efficiency and Multiple Uncertainties [J]. Electric Power, 2025, 58(1): 128-140. |
[10] | Lei TAO, Pingping LUO, Jikeng LIN. Two-stage Detection Method for DC Microgrid False Data Injection Attack Based on Deep Learning [J]. Electric Power, 2024, 57(9): 11-19. |
[11] | Lingling TAN, Wei TANG, Dongqing CHU, Jingrui LI, Yumin ZHANG, Xingquan JI. Optimal Dispatching of Electric-Heat-Hydrogen Integrated Energy System Based on Stackelberg Game [J]. Electric Power, 2024, 57(9): 136-145. |
[12] | Mingfei GAO, Zhonghe HAN, Bin ZHAO, Peng LI, Di WU. Coordinated Optimization and Operational Strategy for Multi-type Energy Storage in Regional Integrated Energy Systems [J]. Electric Power, 2024, 57(9): 205-216. |
[13] | Shiyan ZHU, Yin XU, Jinghan HE, Ying WANG. A Restoration Method for Distribution System Based on Projection of Multiple Microgrids [J]. Electric Power, 2024, 57(9): 224-230. |
[14] | Zhongran YAO, Liying SUN. Balanced Control Strategy of Distributed Energy Storage SOC Considering Line Impedance [J]. Electric Power, 2024, 57(9): 238-246. |
[15] | Hui WANG, Kerui ZHOU, Zuohui WU, Zhichao ZOU, Xin LI. Multi-time Scale Optimal Scheduling of Integrated Energy System Coupling Power-to-Gas and Carbon Capture System [J]. Electric Power, 2024, 57(8): 214-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||