Electric Power ›› 2022, Vol. 55 ›› Issue (1): 75-83.DOI: 10.11930/j.issn.1004-9649.202012060
Previous Articles Next Articles
JING Tao1, CHEN Geng2, WANG Zihao2, XU Pengjiang1, LI Gaochao1, JIA Mingxiao1, WANG Yueshe2, SHI Jinwen2, LI Mingtao2
Received:
2020-12-10
Revised:
2021-04-02
Online:
2022-01-28
Published:
2022-01-20
Supported by:
JING Tao, CHEN Geng, WANG Zihao, XU Pengjiang, LI Gaochao, JIA Mingxiao, WANG Yueshe, SHI Jinwen, LI Mingtao. Research Overview on the Integrated System of Wind-Solar Hybrid Power Generation Coupled with Hydrogen-Based Energy Storage[J]. Electric Power, 2022, 55(1): 75-83.
[1] FANT C, ADAM SCHLOSSER C, STRZEPEK K. The impact of climate change on wind and solar resources in southern Africa[J]. Applied Energy, 2016, 161: 556–564. [2] DING Z Y, HOU H J, YU G, et al. Performance analysis of a wind-solar hybrid power generation system[J]. Energy Conversion and Management, 2019, 181(2): 223–234. [3] 蒋东方, 贾跃龙, 鲁强, 等. 氢能在综合能源系统中的应用前景[J]. 中国电力, 2020, 53(5): 135–142 JIANG Dongfang, JIA Yuelong, LU Qiang, et al. Application prospect of hydrogen energy in integrated energy systems[J]. Electric Power, 2020, 53(5): 135–142 [4] 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3): 1–11 ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54(3): 1–11 [5] REN J Z, GAO S Z, TAN S Y, et al. Hydrogen economy in China: strengths–weaknesses–opportunities–threats analysis and strategies prioritization[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1230–1243. [6] 李健强, 余光正, 汤波, 等. 考虑风光利用率和含氢能流的多能流综合能源系统规划[J]. 电力系统保护与控制, 2021, 49(14): 11–20 LI Jianqiang, YU Guangzheng, TANG Bo, et al. Multi-energy flow integrated energy system planning considering wind and solar utilization and containing hydrogen energy flow[J]. Power System Protection and Control, 2021, 49(14): 11–20 [7] CHEN H H, KANG H Y, LEE A H I. Strategic selection of suitable projects for hybrid solar-wind power generation systems[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 413–421. [8] MILLIGAN M, FREW B, KIRBY B, et al. Alternatives no more: wind and solar power are mainstays of a clean, reliable, affordable grid[J]. IEEE Power and Energy Magazine, 2015, 13(6): 78–87. [9] HOSSEINALIZADEH R, SHAKOURI G H, AMALNICK M S, et al. Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: case study of Iran[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 139–150. [10] BHATTACHARJEE S, ACHARYA S. PV–wind hybrid power option for a low wind topography[J]. Energy Conversion and Management, 2015, 89: 942–954. [11] 徐靖, 赵霞, 罗映红. 氢燃料电池并入微电网的改进虚拟同步机控制[J]. 电力系统保护与控制, 2020, 48(22): 165–172 XU Jing, ZHAO Xia, LUO Yinghong. Improved virtual synchronous generator control for hydrogen fuel cell integration into a microgrid[J]. Power System Protection and Control, 2020, 48(22): 165–172 [12] AL BUSAIDI A S, KAZEM H A, AL-BADI A H, et al. A review of optimum sizing of hybrid PV–wind renewable energy systems in Oman[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 185–193. [13] HONG Y Y, LIAN R C. Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using Markov-based genetic algorithm[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 640–647. [14] SANTOS D M F, SEQUEIRA C A C, FIGUEIREDO J L. Hydrogen production by alkaline water electrolysis[J]. Química Nova, 2013, 36(8): 1176–1193. [15] WANG X Y, ZHANG L S, LI G F, et al. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance[J]. Electrochimica Acta, 2015, 158: 253–257. [16] WEI G Q, XU L, HUANG C D, et al. SPE water electrolysis with SPEEK/PES blend membrane[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7778–7783. [17] 卢一菲, 陈冲, 梁立中. 基于电—氢混合储能的风氢耦合系统建模与控制[J]. 智慧电力, 2020, 48(3): 7–14 LU Yifei, CHEN Chong, LIANG Lizhong. Modeling and control of wind-hydrogen coupling system based on electricity-hydrogen hybrid energy storage[J]. Smart Power, 2020, 48(3): 7–14 [18] TENHUMBERG N, BÜKER K. Ecological and economic evaluation of hydrogen production by different water electrolysis technologies[J]. Chemie Ingenieur Technik, 2020, 92(10): 1586–1595. [19] KATO T. Possibility of hydrogen production from renewable energy[J]. Journal of the Japan Institute of Energy, 2015, 94: 7–18. [20] PAKHIRA S, MENDOZA-CORTES J L. The Quantum nature in the interaction of molecular hydrogen with porous materials: implications for practical hydrogen storage[J]. The Journal of Physical Chemistry C, 2020, 124(11): 6454–6460. [21] 郑津洋, 李静媛, 黄强华, 等. 车用高压燃料气瓶技术发展趋势和我国面临的挑战[J]. 压力容器, 2014, 31(2): 43–51 ZHENG Jinyang, LI Jingyuan, HUANG Qianghua, et al. Technology trends of high pressure vehicle fuel tanks and challenges for China[J]. Pressure Vessel Technology, 2014, 31(2): 43–51 [22] ZHENG J Y, LIU X X, XU P, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1048–1057. [23] 赵永志, 花争立, 欧可升, 等. 车载低温高压复合储氢技术研究现状与挑战[J]. 太阳能学报, 2013, 34(7): 1300–1306 ZHAO Yongzhi, HUA Zhengli, OU Kesheng, et al. Development and challenges of cryo-compressed hydrogen storage technologies for automotive applications[J]. Acta Energiae Solaris Sinica, 2013, 34(7): 1300–1306 [24] AHLUWALIA R K, HUA T Q, PENG J K, et al. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4171–4184. [25] 郭浩, 杨洪海. 固体储氢材料的研究现状及发展趋势[J]. 化工新型材料, 2016, 44(9): 19–21 GUO Hao, YANG Honghai. Current status and future prospect of research on solid-state hydrogen storage material[J]. New Chemical Materials, 2016, 44(9): 19–21 [26] DODDS P E, STAFFELL I, HAWKES A D, et al. Hydrogen and fuel cell technologies for heating: a review[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2065–2083. [27] 王吉华, 居钰生, 易正根, 等. 燃料电池技术发展及应用现状综述(下)[J]. 现代车用动力, 2018, 3(3): 1–5 WANG Jihua, JU Yusheng, YI Zhenggen, et al. Review on development and application of fuel cell technology (2)[J]. Modern Vehicle Power, 2018, 3(3): 1–5 [28] ZHANG F Z, COOKE P. Hydrogen and fuel cell development in China: a review[J]. European Planning Studies, 2010, 18(7): 1153–1168. [29] HAO H, MU Z X, LIU Z W, et al. Abating transport GHG emissions by hydrogen fuel cell vehicles: chances for the developing world[J]. Frontiers in Energy, 2018, 12(3): 466–480. [30] 李海波, 潘志明, 黄耀文. 浅析氢燃料燃气轮机发电的应用前景[J]. 电力设备管理, 2020(8): 94–96 LI Haibo, PAN Zhiming, HUANG Yaowen. Analysis on the application prospect of hydrogen fuel gas turbine power generation[J]. Electric Power Equipment Management, 2020(8): 94–96 [31] 黄乃成, 吴庆礼, 苏来进, 等. 燃气轮机与新能源混合发电的互补性研究[J]. 中外能源, 2020, 25(12): 10–15 HUANG Naicheng, WU Qingli, SU Laijin, et al. Research on complementarity of hybrid power generation of gas turbine and new energy[J]. Sino-Global Energy, 2020, 25(12): 10–15 [32] 蒋康乐. 风光互补联合制氢系统研究及环境效益评价[D]. 邯郸: 河北工程大学, 2018. JIANG Kangle. Research and environmental benefit evaluation of wind-solar hybrid hydrogen production system[D]. Handan: Hebei University of Engineering, 2018. [33] 白树华. 风光氢联合式独立发电系统应用研究[D]. 重庆: 重庆大学, 2007. BAI Shuhua. Application research of the wind solar hydrogen consociation type independent generates system[D]. Chongqing: Chongqing University, 2007. [34] KHALILNEJAD A, RIAHY G H. A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer[J]. Energy Conversion and Management, 2014, 80: 398–406. [35] DURSUN E, ACARKAN B, KILIC O. Modeling of hydrogen production with a stand-alone renewable hybrid power system[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3098–3107. [36] DUFO-LÓPEZ R, BERNAL-AGUSTÍN J L, MENDOZA F. Design and economical analysis of hybrid PV–wind systems connected to the grid for the intermittent production of hydrogen[J]. Energy Policy, 2009, 37(8): 3082–3095. [37] PELLOW M A, EMMOTT C J M, BARNHART C J, et al. Hydrogen or batteries for grid storage? a net energy analysis[J]. Energy & Environmental Science, 2015, 8(7): 1938–1952. [38] BERNAL-AGUSTÍN J L, DUFO-LÓPEZ R. Techno-economical optimization of the production of hydrogen from PV-wind systems connected to the electrical grid[J]. Renewable Energy, 2010, 35(4): 747–758. [39] CHÁVEZ-RAMÍREZ A U, VALLEJO-BECERRA V, CRUZ J C, et al. A hybrid power plant (solar–wind–hydrogen) model based in artificial intelligence for a remote-housing application in Mexico[J]. International Journal of Hydrogen Energy, 2013, 38(6): 2641–2655. [40] FELLAH B, BENYOUCEF B, BELARBI M, et al. Optimal sizing of a hybrid photovoltaic/wind system supplying a desalination unit[J]. Journal of Engineering Science & Technology, 2018, 13(6): 1816–1833. [41] 杨卫华, 蒋康乐, 孙文叶. 不同应用规模下风光互补发电储能系统优化与设计[J]. 节能, 2017, 36(10): 40–43,3 YANG Weihua, JIANG Kangle, SUN Wenye. Optinization and design under different application scale on wind/photovoltaic hydrid generation system[J]. Energy Conservation, 2017, 36(10): 40–43,3 [42] TAFTICHT T, AGBOSSOU K, DOUMBIA M L, et al. An improved maximum power point tracking method for photovoltaic systems[J]. Renewable Energy, 2008, 33(7): 1508–1516. [43] TORREGLOSA J P, GARCÍA P, FERNÁNDEZ L M, et al. Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system[J]. Renewable Energy, 2015, 74: 326–336. [44] 陈皓勇, 陈思敏, 陈锦彬, 等. 面向综合能源系统建模与分析的能量网络理论[J]. 南方电网技术, 2020, 14(2): 62–74 CHEN Haoyong, CHEN Simin, CHEN Jinbin, et al. Energy network theory for modeling and analysis of integrated energy systems[J]. Southern Power System Technology, 2020, 14(2): 62–74 [45] 李文磊. 风光互补发电储能制氢系统研究[D]. 邯郸: 河北工程大学, 2019. LI Wenlei. Research on hydrogen production system of wind-solar complementary power generation[D]. Handan: Hebei University of Engineering, 2019. [46] 聂聪颖, 沈小军, 吕洪, 等. 并网型风电场氢超混合储能容量配置及控制策略研究[J]. 智慧电力, 2020, 48(9): 1–8 NIE Congying, SHEN Xiaojun, LYU Hong, et al. Capacity configuration and control strategy of hydrogen super hybrid energy storage in grid connected wind farm[J]. Smart Power, 2020, 48(9): 1–8 [47] 吕振华, 李强, 韩华春, 等. 计及源荷不确定性和多类储能响应的园区IES多目标优化调度模型[J]. 电力科学与技术学报, 2021, 36(2): 40–50 LV Zhenhua, LI Qiang, HAN Huachun, et al. Multi-objective optimal scheduling model for IES in parks considering source and load uncertainties and multiple type of energy storage responses[J]. Journal of Electric Power Science and Technology, 2021, 36(2): 40–50 |
[1] | WANG Guanchao, HUO Yuchong, LI Qun, LI Qiang. Power Optimization of Wind Farms Based on Improved Jensen Model and Deep Reinforcement Learning [J]. Electric Power, 2025, 58(4): 78-89. |
[2] | Wenjin JIANG, Qiaomei LIU, Xiaodong YANG, Dingfei QUE, Yu SHEN, Xianan HUANG, Zhenhua LAI. Optimal Allocation of Offshore Wind Power-Multiple Energy Storage System Considering Gas-Solid Two-Phase Hydrogen Storage Characteristics [J]. Electric Power, 2024, 57(9): 103-112. |
[3] | Chouwei NI, Yang CHEN, Xuesong ZHANG, Da LIN, Kaijian DU, Jian CHEN. Optimal Configuration Method for Electric-thermo-hydrogen System Considering Safety Risks [J]. Electric Power, 2024, 57(9): 124-135. |
[4] | Rui HU, Shuzhou WU, Yonghua LI, Jiafei QIAO. Study on Vertical Extrapolation Model of Wind Speed in Inland Complex Wind Farms [J]. Electric Power, 2024, 57(5): 232-239. |
[5] | GENG Zhi, LU Xiangwu, WANG Jianli, SHI Tianqing, CHANG Xucheng, GU Yujiong. Optimization of Cooling Channel Structure and Numerical Simulation of Heat Transfer with Flow for CPC Collector [J]. Electric Power, 2023, 56(9): 206-214. |
[6] | FENG Shuai, YUAN Zhi, LI Ji, WANG Weiqing, HE Shan. Optimal Scheduling of Carbon Capture Power Plants Based on Integrated Coordinated Energy Storage System under the Background of Carbon Trading [J]. Electric Power, 2023, 56(6): 139-147. |
[7] | SUN Jingbo, WANG Yang, YANG Xiaofan, LU Zheng, HE Yuan, CHAO Qingchen. Analysis of Spatial and Temporal Variation Character of Climate Risks of Wind and Solar Resources in China [J]. Electric Power, 2023, 56(5): 1-10. |
[8] | LIU Wenjie, PENG Cihua, YAO Jian, JIA Teng, DAI Yanjun. Simulation and Analysis on the Solar-Assisted Direct-Expansion PVT Heat Pump Hot Water System in Lingang [J]. Electric Power, 2023, 56(3): 23-29. |
[9] | Zhenda HU, Wenjin JIANG, Linyao ZHANG, Xiaodong YANG, Yichao ZOU, Kai WANG. Optimal Allocation of Hydrogen Storage Capacity Based on Improved Cat Swarm Optimization [J]. Electric Power, 2023, 56(10): 33-42. |
[10] | Yunpeng CHENG, Jianhua LI, Shouguo CAI, Xuebo ZHANG, Yong WANG, Ye LU, Ying ZHU. Improved Maximum Power Point Tracking Control of Power Signal Feedback Method for Permanent Magnet Synchronous Generator Considering Loss [J]. Electric Power, 2023, 56(10): 62-70. |
[11] | SUN Ziru, AI Qian, JULAITI Abuliz, HE Feng, YUAN Shaowei. Annual Planning Study of Integrated Energy System Considering Seasonal Hydrogen Storage and Futures Carbon Trading [J]. Electric Power, 2022, 55(8): 2-13. |
[12] | HUANG Chang, YAN Yixian, BAI Yao, ZHANG Qi, WANG Weiliang, LI Wenna. Performance Analysis of Solar-Coal Cogeneration System for Wind Power Consumption [J]. Electric Power, 2022, 55(5): 182-188. |
[13] | ZHANG Nan, DUAN Liqiang, DING Zeyu, WANG Jianhua, QU Jie, LUO Na. Performance Analysis of Three Kinds of Integrated Trough Solar Energy Combined Cycle Systems [J]. Electric Power, 2020, 53(4): 169-176. |
[14] | ZHANG Jinsheng. Coupling Design of Tower Concentrated Solar Power System and Coal-Fired Power Generation [J]. Electric Power, 2020, 53(2): 150-155. |
[15] | YIN Chenxu, ZHU Liuzhu, XIANG Chao, YE Bin, ZHANG Li, LIU Hong. Coordinated Dispatch Method for Integrated Microgrid Energy System Considering Interactive Hydrogen Conversion [J]. Electric Power, 2020, 53(10): 88-95,148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||