Electric Power ›› 2020, Vol. 53 ›› Issue (6): 18-26.DOI: 10.11930/j.issn.1004-9649.201910005
Previous Articles Next Articles
LIN Nvgui1, HONG Lanxiu2, HUANG Daoshan3, YI Yang2, LIU Zhixuan3, XU Qifeng4
Received:
2019-10-10
Revised:
2020-02-13
Published:
2020-06-05
Supported by:
LIN Nvgui, HONG Lanxiu, HUANG Daoshan, YI Yang, LIU Zhixuan, XU Qifeng. Abnormal Electricity Consumption Behaviors Detection Based on Improved Deep Auto-Encoder[J]. Electric Power, 2020, 53(6): 18-26.
[1] LEITE J B, SANCHES MANTOVANI J R. Detecting and locating non-technical losses in modern distribution networks[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1023-1032. [2] NAGI J, YAP K S, TIONG S K, et al. Improving SVM-based nontechnical loss detection in power utility using the fuzzy inference system[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 1284-1285. [3] AHMAD T, CHEN H X, WANG J Y, et al. Review of various modeling techniques for the detection of electricity theft in smart grid environment[J]. Renewable and Sustainable Energy Reviews, 2018, 82(3): 2916-2933. [4] 陈启鑫, 郑可迪, 康重庆, 等. 异常用电的检测方法: 评述与展望[J]. 电力系统自动化, 2018, 42(17): 189-199 CHEN Qixin, ZHENG Kedi, KANG Chongqing, et al. Detection methods of abnormal electricity consumption behaviors: review and prospect[J]. Automation of Electric Power Systems, 2018, 42(17): 189-199 [5] 许刚, 谈元鹏, 戴腾辉. 稀疏随机森林下的用电侧异常行为模式检测[J]. 电网技术, 2017, 41(6): 1973-1982 XU Gang, TAN Yuanpeng, DAI Tenghui. Sparse random forest-based abnormal behavior pattern detection of electric power user side[J]. Power System Technology, 2017, 41(6): 1973-1982 [6] 胡殿刚, 李韶瑜, 楼俏, 等. ELM算法在用户用电行为分析中的应用[J]. 计算机系统应用, 2016, 25(8): 155-161 HU Diangang, LI Shaoyu, LOU Qiao, et al. Application of ELM algorithm in the analysis of customer electrical behavior[J]. Computer Systems & Applications, 2016, 25(8): 155-161 [7] ZHENG Z B, YANG Y T, NIU X D, et al. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids[J]. IEEE Transactions on Industrial Informatics, 2018, 14(4): 1606-1615. [8] 杨斌. 基于聚类的异常检测技术的研究[D]. 长沙: 中南大学, 2008. YANG Bin. Research on cluster-based anomaly detection technology[D]. Changsha: Central South University, 2008. [9] PASSOS JÚNIOR L A, OBA RAMOS C C, RODRIGUES D, et al. Unsupervised non-technical losses identification through optimum-path forest[J]. Electric Power Systems Research, 2016, 140: 413-423. [10] 王桂兰, 周国亮, 赵洪山, 等. 大规模用电数据流的快速聚类和异常检测技术[J]. 电力系统自动化, 2016, 40(24): 27-33 WANG Guilan, ZHOU Guoliang, ZHAO Hongshan, et al. Fast clustering and anomaly detection technique for large-scale power data stream[J]. Automation of Electric Power Systems, 2016, 40(24): 27-33 [11] 庄池杰, 张斌, 胡军, 等. 基于无监督学习的电力用户异常用电模式检测[J]. 中国电机工程学报, 2016, 36(2): 379-387 ZHUANG Chijie, ZHANG Bin, HU Jun, et al. Anomaly detection for power consumption patterns based on unsupervised learning[J]. Proceedings of the CSEE, 2016, 36(2): 379-387 [12] 田力, 向敏. 基于密度聚类技术的电力系统用电量异常分析算法[J]. 电力系统自动化, 2017, 41(5): 64-70 TIAN Li, XIANG Min. Abnormal power consumption analysis based on density-based spatial clustering of applications with noise in power systems[J]. Automation of Electric Power Systems, 2017, 41(5): 64-70 [13] 李娜, 张文月, 陈国平, 等. 基于用户负荷特性的电价交叉补贴测算模型[J]. 中国电力, 2019, 52(5): 148-154 LI Na, ZHANG Wenyue, CHEN Guoping, et al. Electricity price cross subsidy calculation model considering load characteristics of electricity consumers[J]. Electric Power, 2019, 52(5): 148-154 [14] 孙毅, 李世豪, 崔灿, 等. 基于高斯核函数改进的电力用户用电数据离群点检测方法[J]. 电网技术, 2018, 42(5): 1595-1606 SUN Yi, LI Shihao, CUI Can, et al. Improved outlier detection method of power consumer data based on Gaussian kernel function[J]. Power System Technology, 2018, 42(5): 1595-1606 [15] 胡天宇, 郭庆来, 孙宏斌. 基于堆叠去相关自编码器和支持向量机的窃电检测[J]. 电力系统自动化, 2019, 43(1): 119-125 HU Tianyu, GUO Qinglai, SUN Hongbin. Nontechnical loss detection based on stacked uncorrelating autoencoder and support vector machine[J]. Automation of Electric Power Systems, 2019, 43(1): 119-125 [16] 张承智, 肖先勇, 郑子萱. 基于实值深度置信网络的用户侧窃电行为检测[J]. 电网技术, 2019, 43(3): 1083-1091 ZHANG Chengzhi, XIAO Xianyong, ZHENG Zixuan. Electricity theft detection for customers in power utility based on real-valued deep belief network[J]. Power System Technology, 2019, 43(3): 1083-1091 [17] 张小斐, 耿俊成, 孙玉宝. 图正则非线性岭回归模型的异常用电行为识别[J]. 计算机工程, 2018, 44(6): 8-12 ZHANG Xiaofei, GENG Juncheng, SUN Yubao. Abnormal electricity behavior recognition of graph regularization nonlinear ridge regression model[J]. Computer Engineering, 2018, 44(6): 8-12 [18] 郭志民, 袁少光, 孙玉宝. 基于L0稀疏超图半监督学习的异常用电行为识别[J]. 计算机应用与软件, 2018, 35(2): 54-59 GUO Zhiminx, YUAN Shaoguang, SUN Yubao. Abnormal electricity power consumption recognition based on L0 sparse hypergraph semi-supervised learning[J]. Computer Applications and Software, 2018, 35(2): 54-59 [19] 袁静, 章毓晋. 融合梯度差信息的稀疏去噪自编码网络在异常行为检测中的应用[J]. 自动化学报, 2017, 43(4): 604-610 YUAN Jing, ZHANG Yujin. App1ication of sparse denoising auto encoder network with gradient difference information for abnormal action detection[J]. Acta Automatica Sinica, 2017, 43(4): 604-610 [20] 赵洪山, 刘辉海, 刘宏杨, 等. 基于堆叠自编码网络的风电机组发电机状态监测与故障诊断[J]. 电力系统自动化, 2018, 42(11): 102-108 ZHAO Hongshan, LIU Huihai, LIU Hongyang, et al. Condition monitoring and fault diagnosis of wind turbine generator based onStacked autoencoder network[J]. Automation of Electric Power Systems, 2018, 42(11): 102-108 [21] NG A. Sparse autoencoder[J]. CS294A Lecture Notes, 2011, 72: 1-19. [22] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12): 3371-3408. [23] 姜锐, 滕伟, 刘潇波, 等. 风电机组发电机轴承电腐蚀故障的分析诊断[J]. 中国电力, 2019, 52(6): 128-133 JIANG Rui, TENG Wei, LIU Xiaobo, et al. Diagnosis of electrical corrosion fault in wind turbine generator bearing based on vibration signal analysis[J]. Electric Power, 2019, 52(6): 128-133 [24] 王鹏, 张朋宇, 高亚静, 等. 监管视角下的电力市场用户分类指标体系及算法研究[J]. 中国电力, 2018, 51(12): 139-148 WANG Peng, ZHANG Pengyu, GAO Yajing, et al. Research on index system and algorithm of customer classification in electricity market from the regulatory perspective[J]. Electric Power, 2018, 51(12): 139-148 [25] 林顺富, 黄娜娜, 赵伦加, 等. 基于用户行为的家庭日负荷曲线模型[J]. 电力建设, 2016, 37(10): 114-121 LIN Shunfu, HUANG Nana, ZHAO Lunjia, et al. Domestic daily load curve modeling based on user behavior[J]. Electric Power Construction, 2016, 37(10): 114-121 [26] 姚历毅, 罗萍萍, 项胤兴, 等. 具有抗逆序及权重自适应的黑启动方案评估方法[J]. 中国电力, 2019, 52(3): 92-99 YAO Liyi, LUO Pingping, XIANG Yinxing, et al. Evaluation method of black start scheme with anti-reverse order and weight adaptive[J]. Electric Power, 2019, 52(3): 92-99 [27] GOODFELLOW I, BENGIO Y, AARON C. Deep learning[M]. Cambridge, MA, USA: MIT Press, 2016. [28] LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[J]. Journal of Machine Learning Research, 2009, 1(10): 1-40. [29] 蔡坤宝, 王成良, 陈曾汉. 产生标准高斯白噪声序列的方法[J]. 中国电机工程学报, 2004, 24(12): 207-211 CAI Kunbao, WANG Chengliang, CHEN Zenghan. A method for generating standard gaussian white noise sequences[J]. Proceedings of the CSEE, 2004, 24(12): 207-211 [30] HU T Y, GUO Q L, SHEN X W, et al. Utilizing unlabeled data to detect electricity fraud in AMI: a semisupervised deep learning approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3287-3299. [31] 朱栋. 典型负荷用电行为模式分析方法及其应用研究[D]. 南京: 东南大学, 2017. ZHU Dong. Analysis and application of typical load electricity behavior model[D]. Nanjing: Southeast University, 2017. |
[1] | Yumin ZHANG, Yongchen ZHANG, Pingfeng YE, Xingquan JI, Chunyou SHI, Fudong CAI, Yichen LI. Enhanced Kernel Ridge Regression and Ensemble Empirical Mode Decomposition Based Distribution Network State Estimation [J]. Electric Power, 2024, 57(9): 156-168. |
[2] | Peng ZHENG, Pengcheng HAN, Guodong WANG, Ying LOU. Refined Diagnosis Method for Disconnected High-Resistance Grounding Faults in Medium-Voltage Distribution Lines [J]. Electric Power, 2024, 57(4): 220-228. |
[3] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. |
[4] | Dan LI, Yunyan LIANG, Shuwei MIAO, Zeren FANG, Yue HU, Shuai HE. Daily Power Scenario Generation Method for Multiple Wind Farms Based on Gaussian Mixture Clustering and Improved Conditional Variational Autoencoder [J]. Electric Power, 2024, 57(12): 17-29. |
[5] | XIN Quanjin, LI Xiaohua, YANG Yi, LI Juncong, XIA Nenghong. Research on Transformer Noise Suppression Based on Redundant Convolutional Encoder Decoder [J]. Electric Power, 2023, 56(4): 112-118. |
[6] | Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram [J]. Electric Power, 2023, 56(10): 71-79. |
[7] | TANG Jinhui, WU Fayuan, ZHI Yanli, MAO Mengting, DAI Xiaomin. Optimization Design of Indoor Substation Ventilation and Noise Reduction Based on Deep Reinforcement Learning [J]. Electric Power, 2023, 56(1): 96-105,118. |
[8] | HU Jing, DENG Ying, JIANG Xingliang, ZENG Yunrui. Feature Extraction and Identification Method of Ice-covered Saddle Mircotopography for Transmission Lines [J]. Electric Power, 2022, 55(8): 135-142. |
[9] | WANG Shuai, LI Lin, CUI Jianye, ZHAO Shousheng, ZHANG Pengning, WANG Yaqi, HE Qiang. Analysis About the Effect of Dielectric Film Surface Residual Charge on Vibration of Filter Capacitor Core [J]. Electric Power, 2022, 55(2): 98-107,151. |
[10] | ZHOU Xin, LIN Jingxing, XIE Zhiwei, ZHANG Zheng, LIANG Ruduo, OU Zuhong. A Distribution Network Expansion Project Classification Model Based on Data Augmentation and Dimensionality Reduction Method [J]. Electric Power, 2022, 55(12): 91-97. |
[11] | FAN Jiangchuan, YU Haozheng, LIU Huiting, YANG Lijun, AN Jiakun. Short-Term Load Forecasting Based on Multi-branch Residual Gated Convolution Neural Network [J]. Electric Power, 2022, 55(11): 155-162,174. |
[12] | HUANG Dongmei, WANG Yueqi, HU Anduo, SUN Jinzhong, SHI Shuai, SUN Yuan, FANG Lingfeng. An Edge Recognition Method for Insulator State Based on Multi-dimension Feature Fusion [J]. Electric Power, 2022, 55(1): 133-141. |
[13] | ZHOU Xuesong, WANG Chenglong, MA Youjie, WU Boning. Active Disturbance Rejection Vector Control for High-Power Asynchronous Motor to Suppress Measurement Noise [J]. Electric Power, 2021, 54(9): 24-33. |
[14] | CHEN Zhixiong, ZENG Honghai, HAN Dongsheng. Adaptive Full-Duplex and Half-Duplex Power Line Relay and Power Optimization Allocation Algorithm [J]. Electric Power, 2021, 54(6): 199-207. |
[15] | HUANG Mingxiang, GUO Zhibin, PAN Lizhi, LI Xuebao. Analysis of Spectrum Characteristics of Audible Noise Generated by AC Corona Discharge [J]. Electric Power, 2021, 54(5): 111-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||