Electric Power ›› 2020, Vol. 53 ›› Issue (4): 155-160.DOI: 10.11930/j.issn.1004-9649.201811057
Previous Articles Next Articles
CHANG Zhengwei1, PENG Qian1, CHEN Ying2
Received:
2018-11-16
Revised:
2019-10-01
Published:
2020-04-05
Supported by:
CHANG Zhengwei, PENG Qian, CHEN Ying. Safety Supervision Method for Power Operation Site Based on Machine Learning and Image Recognition[J]. Electric Power, 2020, 53(4): 155-160.
[1] 陈勇. 电力生产作业安全管理中的问题及对策[J]. 中国新技术新产品, 2018(12): 138–139 [2] 陈满通. 加强电力安全监督检查的有效性思考[J]. 中外企业家, 2018(11): 224, 226 [3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings-2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005). IEEE, 2005: 886-893. [4] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23−28, 2008. Anchorage, AK, USA. IEEE, 2008, 8: 1−8. [5] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D. Cascade object detection with deformable part models[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010. San Francisco, CA, USA. IEEE, 2010: 2241−2248. [6] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645. [7] BENENSON R, MATHIAS M, TIMOFTE R, et al. Pedestrian detection at 100 frames per second[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 2903−2910. [8] SABZMEYDANI P, MORI G. Detecting pedestrians by learning shapelet features[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition, June 17-22, 2007. Minneapolis, MN, USA. IEEE, 2007: 1−8. [9] 杨萌. 基于支持向量机的行人检测技术研究[D]. 北京: 中国科学院大学, 2018. YANG Meng. Research on pedestrian detection technology based on support vector machine[D]. Beijing: University of Chinese Academy of Sciences, 2018. [10] 王江涛, 杨静宇. 红外图像中人体实时检测研究[J]. 系统仿真学报, 2007, 19(19): 4490–4494 WANG Jiangtao, YANG Jingyu. Research on real time pedestrian detection in infrared images[J]. Journal of System Simulation, 2007, 19(19): 4490–4494 [11] 李海龙. 基于区域卷积神经网络的行人检测问题研究[D]. 杭州: 杭州电子科技大学, 2017. LI Hailong. Research on the pedestrian detection based on region of convolution neural network[D]. Hangzhou: Hangzhou Dianzi University, 2017. [12] REN X, BO L, FOX D. RGB-(D) scene labeling: Features and algorithms[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012. Providence, RI. IEEE, 2012: 2759−2766. [13] BENENSON R, MATHIAS M, TUYTELAARS T, et al. Seeking the strongest rigid detector[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013. Portland, OR, USA. IEEE, 2013: 3666-3673. [14] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. [15] WATANABE T, ITO S, YOKOI K. Co-occurrence histograms of oriented gradients for pedestrian detection[C]//Advances in Image and Video Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 37−47. [16] KATAOKA H, TAMURA K, IWATA K, et al. Extended feature descriptor and vehicle motion model with tracking-by-detection for pedestrian active safety[J]. IEICE Transactions on Information and Systems, 2014, E97. D(2): 296–304. [17] 刘威, 段成伟, 遇冰, 等. 基于后验HOG特征的多姿态行人检测[J]. 电子学报, 2015, 43(2): 217–224 LIU Wei, DUAN Chengwei, YU Bing, et al. Multi-pose pedestrian detection based on posterior HOG feature[J]. Acta Electronica Sinica, 2015, 43(2): 217–224 [18] 武光利, 王绵沼. 基于HOG特征与SVM分类器的行人检测研究[J]. 中国有线电视, 2017(12): 1413–1415 WU Guangli, WANG Mianzhao. Research on pedestrian detection based on HOG and SVM[J]. China Digital Cable TV, 2017(12): 1413–1415 [19] BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Computer Vision-ECCV 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 404-417. [20] 刘方园, 王水花, 张煜东. 支持向量机模型与应用综述[J]. 计算机系统应用, 2018, 27(4): 1–9 LIU Fangyuan, WANG Shuihua, ZHANG Yudong. Overview on models and applications of support vector machine[J]. Computer Systems & Applications, 2018, 27(4): 1–9 [21] 白羽. 基于智能视频监控的入侵危险区域算法研究[J]. 科技创新与生产力, 2014(11): 45–47, 49 BAI Yu. Research on algorithm of intrusion dangerous region based on the intelligent video monitoring[J]. Sci-Tech Innovation and Productivity, 2014(11): 45–47, 49 |
[1] | Peng ZHENG, Pengcheng HAN, Guodong WANG, Ying LOU. Refined Diagnosis Method for Disconnected High-Resistance Grounding Faults in Medium-Voltage Distribution Lines [J]. Electric Power, 2024, 57(4): 220-228. |
[2] | Jiang YU, Honghui GAO, Zebing SHI, Weiwei JIANG, Fangying WU, Qingcai ZHAN, Rui ZHANG. Application of Message Compliance Detection and Intrusion Blocking Technology in Remote Operation and Maintenance System of Relay Protection [J]. Electric Power, 2024, 57(3): 135-143, 151. |
[3] | Yunpeng HU, Chenggang DU, Jun QI, Rihong ZHENG, Minfu A, Hao ZHANG, Yongliang LIANG. D-S Evidence Theory Based Comprehensive Identification Model for Cause of Grounding Fault in Distribution Network [J]. Electric Power, 2024, 57(10): 133-142. |
[4] | XU Yilun, ZHANG Binqiao, HUANG Jing, XIE Xiao, WANG Ruoxin, SHEN Danqing, HE Lina, YANG Kaifan. Forecast of Photovoltaic Power Based on IWPA-LSSVM Considering Weather Types and Similar Days [J]. Electric Power, 2023, 56(2): 143-149. |
[5] | Wei HAN, Wenyan DUAN, Xingwei DU, Feng YAO, Weidong MA, Lei LIU. Fault Diagnosis Method for Operational Security Control System Based on Digital Twins [J]. Electric Power, 2023, 56(11): 121-127. |
[6] | Yabing YAN, Xu CHU, Haolong XIAO, Wenwu LIANG, Hui LI, Zhenxing XIA. Automatic Generation Technology of Safety Measures for Digital Substation Based on Improved Support Vector Machine [J]. Electric Power, 2023, 56(10): 194-201. |
[7] | PENG Shengjiang, SUN Chuanshuai, TUO Jianjun, YUAN Tiejiang. Medium and Long-Term Hydrogen Load Forecast for Unified Energy System [J]. Electric Power, 2022, 55(1): 84-90. |
[8] | ZHANG Yunhou, LI Wanying, DONG Fugui. Medium and Long-Term Power Demand Forecasting Based on DE-GWO-SVR [J]. Electric Power, 2021, 54(9): 83-88. |
[9] | LI Dengfeng, YANG Mincai, LIU Yuming, XU Ruilin, YU Xia, LI Zhaojiong. SVR Data-Driven Optimization of Generator Leading Phase Operation Limit [J]. Electric Power, 2021, 54(8): 136-143,153. |
[10] | LI Liang, FAN Jin, YAN Lin, ZHANG Mi, WANG Pengfei, ZHAO Xiaojun, XIAO Haibin. Transformer Fault Diagnosis Based on Hybrid Sampling and Support Vector Machines [J]. Electric Power, 2021, 54(12): 150-155. |
[11] | XIA Xiaofei, LU Yufeng, SU Yi, YANG Jian. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Phase Space Reconstruction and Improved GSA-SVM [J]. Electric Power, 2021, 54(10): 169-176. |
[12] | WANG Zhijie, ZHU Xiaoxing, WANG Xihui, WANG Zhipeng. Identification and Application of the Flow Characteristics of Steam Turbine Valve Based on LSSVM [J]. Electric Power, 2020, 53(9): 189-194. |
[13] | CHEN Hongwei, MA Zherui, LV Chunwang, LIU Yuqiang, ZHANG Wei, WANG Ruikun. Parameter Calculation of Steam Pipeline Based on Hybrid Modeling [J]. Electric Power, 2020, 53(9): 195-201. |
[14] | LIU Wenhui, XU Zunyi, ZHANG Xuran, ZHANG Haiyan. Feature Extraction Method for Wet Flue Gas Desulfurization Under Operating Conditions Based on Mutual Information and PCA Theory [J]. Electric Power, 2020, 53(8): 158-163. |
[15] | GU Kaikai, CHEN Kai, GU Ran, PENG Zhonghan, WU Qirui, SONG You. An Algorithm for Analyzing Typical Transmission Line Icing and Wind Disasters Based on Integration of Fuzzy Comprehensive Evaluation and Support Vector Machine [J]. Electric Power, 2020, 53(6): 56-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||